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Online Analytical Processing (OLAP)

(Source: dwreview.com)

What is OLAP?

multidimensional model, several
(hierarchical) dimensions

measures aggregated (SUM,
MIN, MAX, AVERAGE,. . . )

a set of standard operations:
drill-down, roll-up, slice, dice

answers expected in near
constant time
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The View-Size Materialization problem

Storing the result of a query (a view) is important

You trade storage for (future) speed.

Storage is cheap, faster CPUs are expensive.

Materialized views can be used to compute other views faster.

From sales per (time,store) it is faster to compute
sales per store, than to go back to transactions!

For aggressive aggregation (coarse views), materialized views
are unbeatable!

K. Aouiche and D. Lemire Probabilistic View-Size Estimation.................................3/19



The data cube
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The Data Cube

A d dimensional data
cube is made of 2d − 1
cuboids.

Typical values for d
range from 10 to 20.

You also have
dimensional hierarchies
to handle.

It would take too long
to materialize them all
even if you had
enough storage and
the data never
changed.
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View Selection Heuristics

The Data Cube

given a data warehouse, heuristics can be used to determine
which views to aggregate (the problem itself is typically
NP-hard);

many heuristics assume reliable and accurate estimates of the
view sizes;

even if the choice is done by hand, the analyst needs guidance;

finding optimally fast, accurate and reliable estimates is still
an open problem;

there has been little experimental work to compare the
alternatives!
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What is view-size estimation?

Algorithmically?

Views are typically result of
GROUP BYs;

The size of the view is the
number of distinct elements in
the GROUP BY;

thus, in a simplistic sense,
view-size estimation is
equivalent to finding the
number of distinct elements
in a sequence, using little
memory.
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Summary of the methods under review

Sampling Method

Sampling and Multifractal models [Faloutsos et al., 1996]

Probabilistic Methods

Adaptive counting [Cai et al., 2005];

LogLog probabilistic counting [Durand and Flajolet, 2003];

Gibbons-Tirthapura [Gibbons and Tirthapura, 2001]

Generalized counting [Bar-Yossef et al., 2002]
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Unassuming Probabilistic Techniques
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UNIFORM RANDOM HASHING

What is the big idea?

It is difficult to work
with the original data
because it has
unknown bias.

Instead of learning the
distribution, just hash
every element, and
work into hashed
space.

Suddenly the data
distribution is known:
it is uniform!
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k-wise independent hashing

What is it?

hash to [0, 2L)

uniform hashing: P(h(x) = y) = 1/2L

pairwise independent hashing:
P(h(x) = y ∧ h(x ′) = y ′) = 1/4L.

3-wise independent hashing:
P(h(x) = y ∧ h(x ′) = y ′ ∧ h(x ′′) = y ′′) = 1/8L

pairwise independence implies uniformity.
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Multidimensional Hashing

TIME

March
April

August
March
March

October

STORE

Montreal
New York
Montreal
Toronto

Los Angeles
Miami

PRODUCT

ham
jelly

bread
milk

March→ 0111
April →1010

August→1110
October→0101

...
ham→ 0111
jelly →1010
bread→1110
milk→0101

XOR

How to hash facts?

Use a random number
generator, and
generate independent
hashed values for each
dimensions.

XOR the hashed
values.

If you have k
dimensions, get k-wise
independent hashing.

Scales well if you store
the dimension-wise
hash functions.
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Stochastic (LogLog) Probabilistic Counting
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COUNTING

LOGLOG

rejects outlier

only keep maximum 

The counting trick

Hash to [0, 2L)

Keep track of number
of leading zeroes t,
estimate ≈ 2t

LogLog variant only
seek max leading zero
(outliers)

Stochastic: hash x
randomly to one of M
intervals [0, 2L), keep
track of M lesser
values, do some sort of
geometric average of
the M estimates
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Adaptive counting

[Cai et al., 2005]

Probablistic counting schemes require the view size to be very
large.

A small view compared to the available memory (M), will
leave several of the M counters unused.

When more than 5% of the counters are unused we return a
linear counting estimate [Whang et al., 1990] instead of the
LogLog estimate.
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Generalized counting

[Bar-Yossef et al., 2002]

The tuples and hashed values are stored in an ordered set M.

For small M with respect to the view size, most tuples are
never inserted since their hashed value is larger than the
smallest M hashed values.

Estimate is 2Lsize(M)/max(M) where max(M) returns an
element with the largest hashed value.
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Gibbons-Tirthapura

[Gibbons and Tirthapura, 2001]

Keep track of all items hashed to 1/2t of the hashing space

Estimate is 2tm where m is number of items tracked.
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Experimental results

Benchmark the accuracy and speed for the five algorithms
over:

synthetic data set (derived by DBGEN)
real data set (US Census 1990)

US Census 1990 DBGEN
# of facts 2 458 285 13 977 981
# of views 20 8

# of attributes 69 16
Data size 360 MiB 1.5GiB

Table: Characteristic of data sets.
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Experimental results: small memory budgets

 0.01

 0.1

 1

 10

 100

 1000

 100  1000  10000  100000  1e+06  1e+07

ε,
 s

ta
n

d
a

rd
 e

rr
o

r 
(%

)

View size

M=16
M=64

M=256
M=2048

(a) Gibbons-Tirthapura
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(b) Probabilistic Count-
ing
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(c) LogLog
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(d) Multifractal
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(e) Generalized Counting
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(f) Adaptive Counting

Figure: Standard error of estimation as a function of exact view size for
increasing values of M (US Census 1990).
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Experimental results: large memory budgets
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(a) L=32

 0.01

 0.1

 1

 10

 100

 1000

 10  100  1000  10000  100000  1e+006  1e+007  1e+008

ε,
 s

ta
nd

ar
d 

er
ro

r 
(%

)

Memory budget

Gibbons-Tirthapura
Generalized Counting

LogLog
Counting

Adaptive Counting

(b) L=64

Figure: Standard error of estimation for a given view (four dimensions
and 1.18× 107 distinct tuples) as a function of memory budgets M
(synthetic data set).
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Experimental results: speed

 0

 50

 100

 150

 200

 250

 10  100  1000  10000  100000  1e+006

T
im

e 
(s

ec
on

ds
)

Memory budget

Gibbons-Tirthapura
Generalized Counting

LogLog
Counting

Adaptive Counting

Figure: Estimation time for a given view (four dimensions and 1.18× 107

distinct tuples) as a function of memory budgets M (synthetic data set).
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Conclusion

Main Points

Sampling can be quite unreliable, but very fast.

Processing time of probabilistic methods is dominated by
hashing.

For small view-sizes relative to the available memory budget,
the accuracy of Probablistic Counting and LogLog can be
very low.

However, as you increase the memory budget,
Gibbons-Tirthapura, Generalized Counting and Adaptive
counting systematically improve, but they also become slower.

Adaptive Counting remains constantly fast.
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