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Online Analytical Processing (OLAP)
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The View-Size Materialization problem

Storing the result of a query (a view) is important

@ You trade storage for (future) speed.

@ Storage is cheap, faster CPUs are expensive.
@ Materialized views can be used to compute other views faster.

@ From sales per (time,store) it is faster to compute
sales per store, than to go back to transactions!

o For aggressive aggregation (coarse views), materialized views
are unbeatable!
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The data cube
The Data Cube

@ A d dimensional data
Time - Sors - cube is made of 29 — 1
cuboids.

i N

Time - Store Time -Product Store - Product

o Typical values for d
range from 10 to 20.

>< y @ You also have
y dimensional hierarchies

Time Store Product to handle.
\ / @ It would take too long
to materialize them all
even if you had

enough storage and
the data never
changed.
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View Selection Heuristics

The Data Cube

@ given a data warehouse, heuristics can be used to determine
which views to aggregate (the problem itself is typically
NP-hard);

@ many heuristics assume reliable and accurate estimates of the
view sizes;

@ even if the choice is done by hand, the analyst needs guidance;

o finding optimally fast, accurate and reliable estimates is still
an open problem;

@ there has been little experimental work to compare the
alternatives!
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What is view-size estimation?

Algorithmically? ABC

@ Views are typically result of ABD
GROUP BYs; AAC
@ The size of the view is the ABE

number of distinct elements in
the GROUP BY;

@ thus, in a simplistic sense,
view-size estimation is
equivalent to finding the

number of distinct elements AB
in a sequence, using little
memory. AA
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Summary of the methods under review

Sampling Method
e Sampling and Multifractal models [Faloutsos et al., 1996]

Probabilistic Methods

e Adaptive counting [Cai et al., 2005];

e LocLoc probabilistic counting [Durand and Flajolet, 2003];
o GIBBONS-TIRTHAPURA [Gibbons and Tirthapura, 2001]

o Generalized counting [Bar-Yossef et al., 2002]
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Unassuming Probabilistic Techniques
What is the big idea?

o It is difficult to work
with the original data
because it has

UNIFORM RANDOM HASHING unknown bIaS

@ Instead of learning the
., " - N distribution, just hash
0 every element, and

work into hashed
space.

@ Suddenly the data
distribution is known:
it is uniform!
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k-wise independent hashing

@ hash to [0,2%)
o uniform hashing: P(h(x) = y) = 1/2%
@ pairwise independent hashing:
P(h(x) =y Ah(x') = y') = 1/4%.
@ 3-wise independent hashing:
P(h(x) =y ANh(X') = y' A h(x") = y") = 1/8"

@ pairwise independence implies uniformity.
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Multidimensional Hashing

How to hash facts?

@ Use a random number

TIME STORE generator, and
PRODUGCT !
March Monireal generate independent
April New York ham
August Montreal jelly hashed values for each
March Toronto bread
March Los Angeles milk d d
Oc((;ber Mia%i I dlmenS|ons'

@ XOR the hashed
' v i values.

March— 0111 ham— 0111

April 1010 jeallr;—qmo o If you have k

August—1110 bread—1110 : H H

October—0101 milk—+0101 dimensions, get k-wise
l independent hashing.
32 @ Scales well if you store

the dimension-wise
hash functions.
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Stochastic (LOGLOG) Probabilistic Counting

The counting trick

@ Hash to [0,2%)

@ Keep track of number
of leading zeroes t,

COUNTING
estimate ~ 2t
50000101101 OOZOO o LOGLOG variant only
e S seek max leading zero
0101010110 | (outliers)
00011010101 only keep maximum o Stochastic: hash x
00000 randomly to one of M

intervals [0, 21), keep
track of M lesser
values, do some sort of
geometric average of
the M estimates

LOGLOG
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Adaptive counting

[Cai et al., 2005]

@ Probablistic counting schemes require the view size to be very
large.

@ A small view compared to the available memory (M), will
leave several of the M counters unused.

@ When more than 5% of the counters are unused we return a
linear counting estimate [Whang et al., 1990] instead of the
LoGLOG estimate.
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Generalized counting

[Bar-Yossef et al., 2002]

@ The tuples and hashed values are stored in an ordered set M.

@ For small M with respect to the view size, most tuples are
never inserted since their hashed value is larger than the
smallest M hashed values.

o Estimate is 2Lsize(M)/max(M) where max(M) returns an
element with the largest hashed value.
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GIBBONS-TIRTHAPURA

[Gibbons and Tirthapura, 2001]

o Keep track of all items hashed to 1/2¢ of the hashing space

o Estimate is 2tm where m is number of items tracked.
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Experimental results

@ Benchmark the accuracy and speed for the five algorithms
over:
o synthetic data set (derived by DBGEN)
o real data set (US Census 1990)

US Census 1990 DBGEN

# of facts 2458285 13977981
# of views 20 8

# of attributes 69 16
Data size 360 MiB 1.5GiB

Table: Characteristic of data sets.
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Experimental results: small memory budgets
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Figure: Standard error of estimation as a function of exact view size for
increasing values of M (US Census 1990).
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Experimental results: large memory budgets
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Figure: Standard error of estimation for a given view (four dimensions
and 1.18 x 107 distinct tuples) as a function of memory budgets M
(synthetic data set).
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Experimental results: speed
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Figure: Estimation time for a given view (four dimensions and 1.18 x 107
distinct tuples) as a function of memory budgets M (synthetic data set).
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Conclusion

@ Sampling can be quite unreliable, but very fast.

@ Processing time of probabilistic methods is dominated by
hashing.

@ For small view-sizes relative to the available memory budget,
the accuracy of Probablistic Counting and LOGLOG can be
very low.

@ However, as you increase the memory budget,
GIBBONS-TIRTHAPURA, Generalized Counting and Adaptive
counting systematically improve, but they also become slower.

@ Adaptive Counting remains constantly fast.
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