
Efficient Computation of View Subsets

Todd Eavis
Ahmad Taleb



DOLAP: View Subsets
2

UNIVERSITY

Concordia

Computing OLAP cubes

OLAP is a core component 
of contemporary data 
warehouses.
OLAP is typically based 
upon a data model known 
as a Cube.

In short, the cube is a 
multidimensional view of 
historical data.

In practice, relational 
databases store cube data 
in Star Schemas

A large fact table 
surrounded by smaller 
dimension tables 

To improve performance, 
users often materialize 
aggregates
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The complete cube
The data cube defines 
parent/child relationships

Each child/cuboid
constitutes a subset of the 
parent attributes
Children computed from 
parents but not vice versa

In practice, cuboids grow 
considerably smaller 
towards the bottom of the 
lattice.
Do we need all of them?
1. Users care about the small 

views
2. Do the large view actually 

provide useful information? 
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Cube aggregation

We would like to estimate 
cuboid density

Percentage of parent 
records duplicated in the 
child

Take a 10-d data set with 
1M records

For example at 7 dims, 
12% of view represent 
27% of weight

How much aggregation 
actually takes place
Computed the common 
aggregates for the same 
cube

By 6 dims, 97% of records 
are the same.
By 7 dims, 99.9%
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Density estimation

We would like to estimate 
the density threshold 

point at which the lattice 
becomes much more 
sparse

Use a probabilistic 
technique to estimate 
cuboid size for reasonably 
uniform spaces
With a conservative policy 
(sparse = 99% of parent 
records)

1. Density threshold is 
constant for increased 
dimension count

2. Order of magnitude size 
increase in fact table 
required to move 
threshold
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What does this mean

In short, full cube computation is likely to be 
almost useless, even with enough resources

This is relevant when even considering cube 
structures such as the Dwarf

A better target?
The base cuboid (fact table) 
A subset of cuboids below 4th of 5th level of the 
lattice

A few algorithms proposed for selecting a 
good subset.
But how do you build the subset efficiently, 
especially in big spaces

Full cube algorithms typically won’t work since they 
assume all cuboids are required
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The sequential Pipesort

Our techniques make 
use of the Pipesort
generation algorithm
A top down technique

Build children from 
parents

Basic idea is to build a 
minimum cost 
spanning tree
Represents a series of 
pipelines, each 
sharing a single sort.
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Steiner Tree Approach
One suggestion is to use a Steiner 
Tree representation.
For a graph G, the Steiner Tree can 
be used to find a minimal weight 
tree for a subgraph S, if extra 
nodes need to be added to S.
Because we can no longer process 
the graph level by level, the graph 
must be augmented to include all 
traversal possibilities.

Must create k! additional nodes for 
each original node 
Edges must reach all possible 
descendants

Number of edges in the Steiner 
representation reaches almost 40 
trillion at 10 dimensions
This is intractable, even for parallel 
computers.
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Basic greedy method
Initial idea: use a greedy 
technique to incrementally 
add views to a pipeline
First step is to build the 
essential tree

Just the views required by the 
user.

Use a series of nested loops 
to compute best cuboid to 
add

Each cuboid has a 
computation cost
But, can be used to cheaply 
compute one or more children

Continue until all user 
selected nodes are added.
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Adding non-essential views

Are we done? No, not  quite
It is actually possible that  non-selected views can 
lower the computation cost of the tree
Again, a greedy method can be used to find any useful 
non-selected views.

Continue reviewing candidate nodes until no additional 
benefit determined
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But what about the cost?

What’s the problem.
Naïve implementation runs in 
cubic time.

Works up to about 8 
dimensions but becomes 
intractable after that
Need something that scales to 
12-16 dimensions. 

Building the essential tree
Create pipelines top down
Largest available free view

Motivation?
push the largest possible 
children into existing pipelines
Leaves smallest children to be 
re-sorted for a future pipeline

Can compute full or partial 
cubes
Shown to run in quadratic time

Algorithm 1 Recursive Tree Construction
Input: The full d-dimensional lattice L.
Output: An essential tree E.
1. Sort the views of L by estimated size.
2. repeat

1. Select the next largest “free” view 
v.

2. for all “free” views w at previous 
level that contain a superset of the 
attributes of v do
1. SP = w, if w < current SP

3. Connect SP to v with a “sort” edge.
4. ExtendPipeline(v)

3. 8: until all nodes have been added to E
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Adding non essential views
To add non-selected views, we actually 
proceed in a bottom up fashion.

Mistakes can be expensive, so avoid the big ones
Guarantees that all possible children have already 
been added

Also runs in quadratic time
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Scalability 

The preceding solution provides reasonable compute time to 
about 12 dimensions.
New goal: prune the size of the algorithm’s search space

Nodes to be considered when looking for an addition to the 
current tree.

We note: Node should not be added if it can’t improve the 
cost of at least two current nodes
The algorithm works as follows:

Works top down from original lattice 
Assume view under consideration has at least two current 
children
Compute benefit of adding view
Discard anything that doesn’t improve current tree
We add a confidence factor that adjust aggressiveness

Run time is O(d *n)
Benefit: quickly reduce the size of the useful lattice so that 
O(n2) components work on a much smaller graph
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Sample evaluation
The estimated size (dense verse sparse) 
affects the algorithm’s choices.
As views become more sparse (at the top of 
the lattice), it’s more unlikely that they will 
be useful
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Experimental results

We would like to evaluate the run-time 
of the algorithm and its ability to make 
subset trees smaller.
We have evaluated both real and 
synthetic data sets
Here, 1 million records, mixed 
cardinalities on the dimensions
Evaluated against naïve cubic time 
approach and original Pipesort
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Quality and cost

We can evaluate the tree 
costs on the full cube 
versus the original 
Pipesort

Less than 1/10 of 1% 
difference in size of 
generated trees

Cost of computing the 
full cube

Approximately the same 
as the Pipesort
Cubic time takes months 
of compute time at  10+ 
dimensions

Tree costs versus Pipesort
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Partial trees
What about partial cubes?
We compare the exhaustive 
greedy algorithm to the new 
one

Best of either full cube 
algorithm or individual 
generation
Random subsets of 25% of the 
full space. 
Reductions of 28-48% relative 
to full cube

In practice, users don’t select 
the top level views

For subsets of 3 dimensions 
and less
Reduction in cost of 60 to 
70%.

Non essential views?
3 attributes or less?
The new methods reduce 
essential tree by 30% to 50%

Tree reduction
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Pruning for high dimensions
How much of the space 
can actually be pruned?
We cut the size by 2% to 
about 75% at 16 dims

48K of 65K views
About a factor of 16 
performance improvement

We also increased 
confidence factor from 1 to 
3 at 14 dims

Views pruned drop from 
56% to 34% to about 0
However, size/quality of 
final tree does not change
In short: be aggressive 
AND fast 
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Conclusions

In practice, full computation is 
expensive and has little value

Other data structures are possible but 
may be complex and/or slow on practical 
problems

What if a partial set has been 
identified? 

Our partial cube methods produce very 
efficient computational plans
Can be executed quickly
Generate standard table that can be 
utilized directly in current systems
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