
Efficient Computation of View Subsets

Todd Eavis
Ahmad Taleb

DOLAP: View Subsets
2

UNIVERSITY

Concordia

Computing OLAP cubes

OLAP is a core component
of contemporary data
warehouses.
OLAP is typically based
upon a data model known
as a Cube.

In short, the cube is a
multidimensional view of
historical data.

In practice, relational
databases store cube data
in Star Schemas

A large fact table
surrounded by smaller
dimension tables

To improve performance,
users often materialize
aggregates

Fact Table

Location key

Product key

Customer
keyTotal sales

Product

Product key

Product key

Customer
keyMore…

Location

Location key

Store

City

More…

Customer

Customer
keyname

age

More…

Fact table

cust-id
prod-id
date-id
staff-id
store-id
Sales

Cust-Date
Summary
cust-id
date-id
Sales

Prod-Date
Summary

prod-id
date-id
Sales

Produc

t

Customer

Date

Store

Staff

DOLAP: View Subsets
3

UNIVERSITY

Concordia

The complete cube
The data cube defines
parent/child relationships

Each child/cuboid
constitutes a subset of the
parent attributes
Children computed from
parents but not vice versa

In practice, cuboids grow
considerably smaller
towards the bottom of the
lattice.
Do we need all of them?
1. Users care about the small

views
2. Do the large view actually

provide useful information?

ABCD

ABC ABD ACD BCD

AC BCAD BD CDAB

A B C D

all

DOLAP: View Subsets
4

UNIVERSITY

Concordia

Cube aggregation

We would like to estimate
cuboid density

Percentage of parent
records duplicated in the
child

Take a 10-d data set with
1M records

For example at 7 dims,
12% of view represent
27% of weight

How much aggregation
actually takes place
Computed the common
aggregates for the same
cube

By 6 dims, 97% of records
are the same.
By 7 dims, 99.9%

View Count and Storage

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Dimension Count

Pe
rc

en
ta

ge
 o

f T
ot

al

Storage required View count

Record Sparsity

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Dimension Count

Pe
rc

en
ta

ge
 o

f i
np

ut
 s

et

DOLAP: View Subsets
5

UNIVERSITY

Concordia

Density estimation

We would like to estimate
the density threshold

point at which the lattice
becomes much more
sparse

Use a probabilistic
technique to estimate
cuboid size for reasonably
uniform spaces
With a conservative policy
(sparse = 99% of parent
records)

1. Density threshold is
constant for increased
dimension count

2. Order of magnitude size
increase in fact table
required to move
threshold

Density Threshold

0

1

2

3

4

5

6

7

8

9

8 10 12 14

Dimension Count
Th

re
sh

ol
d

D
im

en
si

on

100K
1M
10M
100M

DOLAP: View Subsets
6

UNIVERSITY

Concordia

What does this mean

In short, full cube computation is likely to be
almost useless, even with enough resources

This is relevant when even considering cube
structures such as the Dwarf

A better target?
The base cuboid (fact table)
A subset of cuboids below 4th of 5th level of the
lattice

A few algorithms proposed for selecting a
good subset.
But how do you build the subset efficiently,
especially in big spaces

Full cube algorithms typically won’t work since they
assume all cuboids are required

DOLAP: View Subsets
7

UNIVERSITY

Concordia

The sequential Pipesort

Our techniques make
use of the Pipesort
generation algorithm
A top down technique

Build children from
parents

Basic idea is to build a
minimum cost
spanning tree
Represents a series of
pipelines, each
sharing a single sort.

CBAD

CBA BAD ACD BCD

AC AD CB DB CDBA

A B C D

all

DOLAP: View Subsets
8

UNIVERSITY

Concordia

Steiner Tree Approach
One suggestion is to use a Steiner
Tree representation.
For a graph G, the Steiner Tree can
be used to find a minimal weight
tree for a subgraph S, if extra
nodes need to be added to S.
Because we can no longer process
the graph level by level, the graph
must be augmented to include all
traversal possibilities.

Must create k! additional nodes for
each original node
Edges must reach all possible
descendants

Number of edges in the Steiner
representation reaches almost 40
trillion at 10 dimensions
This is intractable, even for parallel
computers.

DOLAP: View Subsets
9

UNIVERSITY

Concordia

Basic greedy method
Initial idea: use a greedy
technique to incrementally
add views to a pipeline
First step is to build the
essential tree

Just the views required by the
user.

Use a series of nested loops
to compute best cuboid to
add

Each cuboid has a
computation cost
But, can be used to cheaply
compute one or more children

Continue until all user
selected nodes are added.

CBAD

AC CB

A B C D

all

DOLAP: View Subsets
10

UNIVERSITY

Concordia

Adding non-essential views

Are we done? No, not quite
It is actually possible that non-selected views can
lower the computation cost of the tree
Again, a greedy method can be used to find any useful
non-selected views.

Continue reviewing candidate nodes until no additional
benefit determined

BCAD

CA BC AB

BCAD

CA BC AB

BCA

DOLAP: View Subsets
11

UNIVERSITY

Concordia

But what about the cost?

What’s the problem.
Naïve implementation runs in
cubic time.

Works up to about 8
dimensions but becomes
intractable after that
Need something that scales to
12-16 dimensions.

Building the essential tree
Create pipelines top down
Largest available free view

Motivation?
push the largest possible
children into existing pipelines
Leaves smallest children to be
re-sorted for a future pipeline

Can compute full or partial
cubes
Shown to run in quadratic time

Algorithm 1 Recursive Tree Construction
Input: The full d-dimensional lattice L.
Output: An essential tree E.
1. Sort the views of L by estimated size.
2. repeat

1. Select the next largest “free” view
v.

2. for all “free” views w at previous
level that contain a superset of the
attributes of v do
1. SP = w, if w < current SP

3. Connect SP to v with a “sort” edge.
4. ExtendPipeline(v)

3. 8: until all nodes have been added to E

DOLAP: View Subsets
12

UNIVERSITY

Concordia

Adding non essential views
To add non-selected views, we actually
proceed in a bottom up fashion.

Mistakes can be expensive, so avoid the big ones
Guarantees that all possible children have already
been added

Also runs in quadratic time

ACD

AB

A

BC

ABCDE

AD

100000

ACD

AB

A

BC

ABCDE

AD

10000ABCD

ACD

AB

A

BC

ABCDE

AD

1000ABCE

DOLAP: View Subsets
13

UNIVERSITY

Concordia

Scalability

The preceding solution provides reasonable compute time to
about 12 dimensions.
New goal: prune the size of the algorithm’s search space

Nodes to be considered when looking for an addition to the
current tree.

We note: Node should not be added if it can’t improve the
cost of at least two current nodes
The algorithm works as follows:

Works top down from original lattice
Assume view under consideration has at least two current
children
Compute benefit of adding view
Discard anything that doesn’t improve current tree
We add a confidence factor that adjust aggressiveness

Run time is O(d *n)
Benefit: quickly reduce the size of the useful lattice so that
O(n2) components work on a much smaller graph

DOLAP: View Subsets
14

UNIVERSITY

Concordia

Sample evaluation
The estimated size (dense verse sparse)
affects the algorithm’s choices.
As views become more sparse (at the top of
the lattice), it’s more unlikely that they will
be useful

AB BC

ABCD

100 700

AB BC

ABCD

100

300

ABC

50

AB BC

ABCD

100

650

ABC

95

800 450 845

DOLAP: View Subsets
15

UNIVERSITY

Concordia

Experimental results

We would like to evaluate the run-time
of the algorithm and its ability to make
subset trees smaller.
We have evaluated both real and
synthetic data sets
Here, 1 million records, mixed
cardinalities on the dimensions
Evaluated against naïve cubic time
approach and original Pipesort

DOLAP: View Subsets
16

UNIVERSITY

Concordia

Quality and cost

We can evaluate the tree
costs on the full cube
versus the original
Pipesort

Less than 1/10 of 1%
difference in size of
generated trees

Cost of computing the
full cube

Approximately the same
as the Pipesort
Cubic time takes months
of compute time at 10+
dimensions

Tree costs versus Pipesort

0

0.2

0.4

0.6

0.8

1

1.2

6 7 8 9 10 11 12

Dimension Count

R
el

at
iv

e
In

cr
ea

se
 (%

)

Greedy cube Recursive pipeline

Run-time cost

1

10

100

1000

10000

100000

1000000

6 7 8 9 10 11 12

Dimension Count

R
un

 ti
m

e
(s

ec
on

ds
)

Greedy cube Recursive pipeline Pipesort

DOLAP: View Subsets
17

UNIVERSITY

Concordia

Partial trees
What about partial cubes?
We compare the exhaustive
greedy algorithm to the new
one

Best of either full cube
algorithm or individual
generation
Random subsets of 25% of the
full space.
Reductions of 28-48% relative
to full cube

In practice, users don’t select
the top level views

For subsets of 3 dimensions
and less
Reduction in cost of 60 to
70%.

Non essential views?
3 attributes or less?
The new methods reduce
essential tree by 30% to 50%

Tree reduction

0

10

20

30

40

50

60

6 7 8 9

Dimension count

R
el

at
iv

e
re

du
ct

io
n

(%
)

Greedy cube Recursive pipeline

Non essential views

0

10

20

30

40

50

60

6 8 10 12 14

Dimension Count

R
el

at
iv

e
re

du
ct

io
n

(%
)

Greedy cube Recursive pipeline

3 dimensions or less

0

10

20

30

40

50

60

70

80

90

100

6 8 10 12 14

Dimension count

R
el

at
iv

e
re

du
ct

io
n

(%
)

DOLAP: View Subsets
18

UNIVERSITY

Concordia

Pruning for high dimensions
How much of the space
can actually be pruned?
We cut the size by 2% to
about 75% at 16 dims

48K of 65K views
About a factor of 16
performance improvement

We also increased
confidence factor from 1 to
3 at 14 dims

Views pruned drop from
56% to 34% to about 0
However, size/quality of
final tree does not change
In short: be aggressive
AND fast

View Pruning

0

10

20

30

40

50

60

70

80

6 8 10 12 14 16

Dimension count

Vi
ew

s
pr

un
ed

 (%
)

Confidence Factor Effect

0

10

20

30

40

50

60

1 2 3

Confidence factor

R
el

at
iv

e
re

du
ct

io
n

(%
)

Views pruned Tree weight

DOLAP: View Subsets
19

UNIVERSITY

Concordia

Conclusions

In practice, full computation is
expensive and has little value

Other data structures are possible but
may be complex and/or slow on practical
problems

What if a partial set has been
identified?

Our partial cube methods produce very
efficient computational plans
Can be executed quickly
Generate standard table that can be
utilized directly in current systems

	Efficient Computation of View Subsets
	Computing OLAP cubes
	The complete cube
	Cube aggregation
	Density estimation
	What does this mean
	The sequential Pipesort
	Steiner Tree Approach
	Basic greedy method
	Adding non-essential views
	But what about the cost?
	Adding non essential views
	Scalability
	Sample evaluation
	Experimental results
	Quality and cost
	Partial trees
	Pruning for high dimensions
	Conclusions

