Efficient Computation of View Subsets

Todd Eavis
Ahmad Taleb
Computing OLAP cubes

- OLAP is a core component of contemporary data warehouses.
 - OLAP is typically based upon a data model known as a Cube.
 - In short, the cube is a multidimensional view of historical data.
 - In practice, relational databases store cube data in Star Schemas
 - A large fact table surrounded by smaller dimension tables
 - To improve performance, users often materialize aggregates

[Diagram of OLAP cube schema]

- Fact Table: cust-id prod-id date-id staff-id store-id
- Customer: cust-id name age
- Product: prod-id
- Location: store city
- Date
- Store
- Staff

Fact table

- cust-id
- prod-id
- date-id
- staff-id
- store-id
- Sales

Summary

- Prod-Date Summary
 - prod-id
 - date-id
 - Sales

- Cust-Date Summary
 - cust-id
 - date-id
 - Sales
The complete cube

- The data cube defines parent/child relationships
 - Each child/cuboid constitutes a subset of the parent attributes
 - Children computed from parents but not vice versa

- In practice, cuboids grow considerably smaller towards the bottom of the lattice.

- Do we need all of them?
 1. Users care about the small views
 2. Do the large view actually provide useful information?
Cube aggregation

- We would like to estimate cuboid density
 - Percentage of parent records duplicated in the child
- Take a 10-d data set with 1M records
 - For example at 7 dims, 12% of view represent 27% of weight
- How much aggregation actually takes place
- Computed the common aggregates for the same cube
 - By 6 dims, 97% of records are the same.
 - By 7 dims, 99.9%
Density estimation

- We would like to estimate the density threshold
 - point at which the lattice becomes much more sparse
- Use a probabilistic technique to estimate cuboid size for reasonably uniform spaces
- With a conservative policy (sparse = 99% of parent records)
 1. Density threshold is constant for increased dimension count
 2. Order of magnitude size increase in fact table required to move threshold
What does this mean

- In short, full cube computation is likely to be almost useless, even with enough resources
 - This is relevant when even considering cube structures such as the Dwarf

- A better target?
 - The base cuboid (fact table)
 - A subset of cuboids below 4th of 5th level of the lattice

- A few algorithms proposed for selecting a good subset.

- But how do you build the subset efficiently, especially in big spaces
 - Full cube algorithms typically won’t work since they assume all cuboids are required
The sequential Pipesort

- Our techniques make use of the Pipesort generation algorithm
- A top down technique
 - Build children from parents
- Basic idea is to build a minimum cost spanning tree
- Represents a series of pipelines, each sharing a single sort.
One suggestion is to use a **Steiner Tree** representation.

For a graph G, the Steiner Tree can be used to find a minimal weight tree for a subgraph S, if extra nodes need to be added to S.

Because we can no longer process the graph level by level, the graph must be augmented to include all traversal possibilities.

- Must create $k!$ additional nodes for each original node
- Edges must reach all possible descendants

Number of edges in the Steiner representation reaches almost 40 trillion at 10 dimensions

This is intractable, even for parallel computers.
Basic greedy method

- **Initial idea:** use a greedy technique to incrementally add views to a pipeline.
- **First step** is to build the **essential tree**:
 - Just the views required by the user.
- Use a series of nested loops to compute best cuboid to add:
 - Each cuboid has a computation cost.
 - But, can be used to cheaply compute one or more children.
- Continue until all user selected nodes are added.
Adding non-essential views

- Are we done? No, not quite
- It is actually possible that non-selected views can lower the computation cost of the tree
- Again, a greedy method can be used to find any useful non-selected views.
 - Continue reviewing candidate nodes until no additional benefit determined
But what about the cost?

- What’s the problem.
- Naive implementation runs in cubic time.
 - Works up to about 8 dimensions but becomes intractable after that
 - Need something that scales to 12-16 dimensions.
- Building the essential tree
 - Create pipelines top down
 - Largest available free view
- Motivation?
 - push the largest possible children into existing pipelines
 - Leaves smallest children to be re-sorted for a future pipeline
- Can compute full or partial cubes
- Shown to run in quadratic time

Algorithm 1 Recursive Tree Construction
Input: The full d-dimensional lattice L.
Output: An essential tree E.
1. Sort the views of L by estimated size.
2. repeat
 1. Select the next largest “free” view v.
 2. for all “free” views w at previous level that contain a superset of the attributes of v do
 1. SP = w, if w < current SP
 3. Connect SP to v with a “sort” edge.
 4. ExtendPipeline(v)
3. 8: until all nodes have been added to E
Adding non essential views

- To add non-selected views, we actually proceed in a bottom up fashion.
 - Mistakes can be expensive, so avoid the big ones
 - Guarantees that all possible children have already been added
- Also runs in quadratic time
The preceding solution provides reasonable compute time to about 12 dimensions.

New goal: **prune** the size of the algorithm’s **search space**
- Nodes to be considered when looking for an addition to the current tree.

We note: Node should not be added if it can’t improve the cost of at least two current nodes

The algorithm works as follows:
- Works top down from original lattice
- Assume view under consideration has at least two current children
- Compute benefit of adding view
- Discard anything that doesn’t improve current tree
- We add a confidence factor that adjust aggressiveness

Run time is $O(d \times n)$

Benefit: quickly reduce the size of the useful lattice so that $O(n^2)$ components work on a much smaller graph
Sample evaluation

- The estimated size (dense verse sparse) affects the algorithm’s choices.
- As views become more sparse (at the top of the lattice), it’s more unlikely that they will be useful.
We would like to evaluate the run-time of the algorithm and its ability to make subset trees smaller.

We have evaluated both real and synthetic data sets.

Here, 1 million records, mixed cardinalities on the dimensions.

Evaluated against naïve cubic time approach and original Pipesort.
Quality and cost

- We can evaluate the tree costs on the full cube versus the original Pipesort
 - Less than 1/10 of 1% difference in size of generated trees
- Cost of computing the full cube
 - Approximately the same as the Pipesort
 - Cubic time takes months of compute time at 10+ dimensions
Partial trees

- What about partial cubes?
- We compare the exhaustive greedy algorithm to the new one
 - Best of either full cube algorithm or individual generation
 - Random subsets of 25% of the full space.
 - Reductions of 28-48% relative to full cube
- In practice, users don’t select the top level views
 - For subsets of 3 dimensions and less
 - Reduction in cost of 60 to 70%.
- Non essential views?
 - 3 attributes or less?
 - The new methods reduce essential tree by 30% to 50%
Pruning for high dimensions

- How much of the space can actually be pruned?
 - We cut the size by 2% to about 75% at 16 dims
 - 48K of 65K views
 - About a factor of 16 performance improvement
 - We also increased confidence factor from 1 to 3 at 14 dims
 - Views pruned drop from 56% to 34% to about 0
 - However, size/quality of final tree does not change
 - In short: be aggressive AND fast

View Pruning

Confidence Factor Effect
Conclusions

- In practice, full computation is expensive and has little value
 - Other data structures are possible but may be complex and/or slow on practical problems

- What if a partial set has been identified?
 - Our partial cube methods produce very efficient computational plans
 - Can be executed quickly
 - Generate standard table that can be utilized directly in current systems