CT-OLAP: Temporal Multidimensional Model and Algebra for Moving Objects

Eilverijus Kondratas and Igor Timko

Free University of Bozen-Bolzano, Italy

DOLAP 2007, November 9, 2007, Lisbon, Portugal

Outline

- Problem
- Current Technology
- Our approach
 - Model Extension
 - Algebra Extension
- Implementation
- Conclusions and Future Work

Outline

- Problem
- Current Technology
- Our approach
 - Model Extension
 - Algebra Extension
- Implementation
- Conclusions and Future Work

Problem - Traffic Jams

- Traffic jams is nowadays problem, especially in large cities
- Governments put a lot of effort to reduce traffic jams

Problem - Traffic Jams

- Traffic jams is nowadays problem, especially in large cities
- Governments put a lot of effort to reduce traffic jams
- Traffic jams analysts need tools to help in modeling and analyzing data
- Ongoing project "Bolzano in 10 minutes" (BZ10M) with municipality of Bolzano

Objects of Interest

We are interested in car groups

Query: "How the number of cars was changing per each district in the last three months?"

Outline

- Problem
- Current Technology
- Our approach
 - Model Extension
 - Algebra Extension
- Implementation
- Conclusions and Future Work

Current Technology

- Temporal On-Line Analytical processing (TOLAP)[1,2,3] is a technology to answer temporal analytical queries
- Industrial and research fields support only discrete time TOLAP
- A problem:
 - A car (groups of cars) which moves continuously can not be directly represented in TOLAP

Current Technology

- Temporal On-Line Analytical processing (TOLAP)[1,2,3] is a technology to answer temporal analytical queries
- Industrial and research fields support only discrete time TOLAP
- A problem:
 - A car (groups of cars) which moves continuously can not be directly represented in TOLAP
- We want to extend existing TOLAP model and algebra to handle continuous time

Current Model

We use model defined by Pedersen et al.: "A Foundation for Capturing and Querying Complex Multidimensional Data", *Information Systems*, 26(5):383–423, 2001.

Current Model

- Fact are objects of interest
- Dimensions are properties of facts
- Fact-Dimension relations relate facts to particular dimension values

Outline

- Problem
- Current Technology
- Our approach
 - Model Extension
 - Algebra Extension
- Implementation
- Conclusions and Future Work

Extended Model

- We substitute single dimension values with dimension functions
- Fact valid time is associated with a fact itself

Extended Model

- Two dimension types: basic and extended
 - Basic type dimensions hold only constant functions
 - Extended type dimensions hold continuous, constant step-wise, etc. functions

Dimension Functions

Dimension functions

Algebra

- We want to make algebra at least as powerful as BCDM
 [4] excluding transaction time
- Algebra operators
 - Select
 - Project (borrowed from Pedersen et al.)
 - Union (borrowed from Pedersen et al.)
 - Difference
 - Identity-based join
 - Aggregate formation

Selection (1/2)

- We perform sequenced (for every instance of time) select that restricts set of facts to those that satisfy given predicate
- Select groups of cars of size 3 or bigger that were moving less than 30 km/h ($p = (speed < 30 \land size \ge 3)$)

Selection (1/2)

- We perform sequenced (for every instance of time) select that restricts set of facts to those that satisfy given predicate
- Select groups of cars of size 3 or bigger that were moving less than 30 km/h ($p = (speed < 30 \land size \ge 3)$)

Selection (1/2)

- We perform sequenced (for every instance of time) select that restricts set of facts to those that satisfy given predicate
- Select groups of cars of size 3 or bigger that were moving less than 30 km/h ($p = (speed < 30 \land size \ge 3)$)

Selection (2/2)

Given a n-dimensional $MO = (\mathcal{S}, F, D, R)$ and predicate p on the dimensions $D = \{D_1, \dots, D_n\}$, we define the CT selection operator, σ^t , as follows: $\sigma^t[p](M) = (\mathcal{S}, F', D, R')$ where

$$F' = \{(f, T'_f) | (f, T_f) \in F \land (\exists T'_f \subseteq T_f (\forall t \in T'_f (\forall t \in T'_f (\exists e_1 \in D_1, ..., e_n \in D_n | p(e_1(t), ..., e_n(t)))))\},$$

$$R' = R'_i, R'_i = \{(f, e(t)) | (f, T'_f) \in F'\}.$$

Difference (1/2)

 Difference operator takes difference of facts of two multidimensional objects

Difference (1/2)

 Difference operator takes difference of facts of two multidimensional objects

Difference (1/2)

 Difference operator takes difference of facts of two multidimensional objects

Difference (2/2)

Provided that $S_1 = S_2$, the *CT difference* operator, \setminus^t , is defined as: $M_1 \setminus^t M_2 = (S_1, F', D_1, R')$, where

$$F' = \{ (f, T_f) | ((f, T_f) \in F_1 \land (f, T'_f) \notin F_2) \lor \\ ((f, T_f) \in F_1 \land (f, T'_f) \in F_2 \land \\ T_f \neq T'_f \land T_f = T_f - T'_f) \}$$

$$R' = \{ (f, e(t)) | (f, T_f) \in F' \land (f, e(t)) \in R_{1i} \}$$

Identity-based Join (1/2)

Identity-based Join (proposed by Pedersen) joins those facts of two multidimensional objects which satisfy join predicate and their valid time overlap.

Given a predicate $p(f_1, f_2) \in \{f_1 = f_2, f_1 \neq f_2, true\}$, the *CT* identity-based join operator, \bowtie , is defined as follows: $M_1 \bowtie [p]M_2 = (\mathcal{S}', F', D', R')$, (mathematical notation omitted)

Identity-based Join (1/2)

Identity-based Join (proposed by Pedersen) joins those facts of two multidimensional objects which satisfy join predicate and their valid time overlap.

Given a predicate $p(f_1, f_2) \in \{f_1 = f_2, f_1 \neq f_2, true\}$, the *CT* identity-based join operator, \bowtie , is defined as follows: $M_1 \bowtie [p]M_2 = (\mathcal{S}', F', D', R')$, (mathematical notation omitted)

- Properties of Identity-based join:
 - When predicate is true, we get Cartesian product
 - Value-based join can be expressed by combining Cartesian product, selection and projection
 - Natural join is special case of value based join

Identity-based Join (2/2)

When predicete is true we get Cartesian product

Aggregate Formation (1/3)

- We support sequenced and non-sequenced aggregation
- Aggregation is performed in three steps:
 - 1. We group by dimension values(GROUP BY clause)
 - 2. We group facts into given time intervals ($G^t[T]$)
 - 3. Apply aggregate function for each group of facts

Aggregate Formation (2/3) - Grouping

We perform temporal grouping by fixed intervals

Given a time interval, T, and a set of facts, $\overline{F} \subseteq F$, the CT group operator, G^t , is defined as:

$$G^{t}[T](\overline{F}) = \{f | (f, T_f) \in \overline{F} \land T_f \cap T \neq \emptyset\}.$$

Aggregate Formation (2/3) - Grouping

We perform temporal grouping by fixed intervals

Given a time interval, T, and a set of facts, $\overline{F} \subseteq F$, the CT group operator, G^t , is defined as:

$$G^{t}[T](\overline{F}) = \{f | (f, T_f) \in \overline{F} \land T_f \cap T \neq \emptyset\}.$$

Aggregate formation (3/3) - Example

• $\alpha^t[AvgSpeed, AVG_{speed}, \top, City, \top, T](M)$, where $T = \{[10.00; 10.20], [10.20; 10.40], [10.40, 11.00]\}$.

Aggregate formation (3/3) - Example

• $\alpha^t[AvgSpeed, AVG_{speed}, \top, City, \top, T](M)$, where $T = \{[10.00; 10.20], [10.20; 10.40], [10.40, 11.00]\}$.

Expressive power of CT-OLAP algebra

- Goal was to make algebra at least as powerful as BCDM algrbea
 - We support two different facts with same dimension values
 - BCDM does not support two different tuples with same attribute values - does coalescing

Expressive power of CT-OLAP algebra

- Goal was to make algebra at least as powerful as BCDM algrbea
 - We support two different facts with same dimension values
 - BCDM does not support two different tuples with same attribute values - does coalescing
- CT-OLAP model and algebra with coalescing is at least as powerful as bitemporal conceptual data model (BCDM) and its algebra, without transaction time support, extended with aggregate formation operator
- Intuitively, continuity makes CT-OLAP algebra more powerful than BCDM, since continuous functions can not be directly represented in BCDM model

Relation with Pedersen's Model

Snapshot operator returns a snapshot of a given object at a given instance of time. The resulting object is a multidimensional object defined in terms of Pedersen's model.

Relation with Pedersen's Model

- Snapshot operator returns a snapshot of a given object at a given instance of time. The resulting object is a multidimensional object defined in terms of Pedersen's model.
- We apply the snapshot operator on M with t = 10.15

Outline

- Problem
- Current Technology
- Our approach
 - Model Extension
 - Algebra Extension
- Implementation
- Conclusions and Future Work

Implementation (1/2)

- We are implementing our model and algebra in Secondo Database management system [5]
- Secondo is a database management system that supports continuous changes in continuous time
- We use:
 - Secondo data types for representing dimension functions
 - Secondo operations for algebraic operators

Implementation (2/2)

Fact table in a relational representation of and the extended model

Speed	Location	Size
$\mathbf{e_1}(\mathbf{t})$	Via Roma	$\mathbf{s_1}(\mathbf{t})$
$\mathbf{e_2}(\mathbf{t})$	Via Roma	$\mathbf{s_2}(\mathbf{t})$
${f e_3(t)}$	Via Carducci	$\mathbf{s_3}(\mathbf{t})$

Outline

- Problem
- Current Technology
- Our approach
 - Model Extension
 - Algebra Extension
- Implementation
- Conclusions and Future Work

Summary and Conclusions

- We present a continuous time multidimensional model for temporal OLAP by extending Pedersen's et al. model
- We extend existing algebra to handle continuous dimension values
- Discrete data can be modeled together with continuous data
- Expressive power of CT-OLAP algebra is at least as powerful as algebras of BCDM model

Future Work

- Research perspective
 - Investigation about hierarchies in dimensions with continuous functions
 - To investigate possibility of extending Probabilistic OLAP models to handle continuous time

Future Work

- Research perspective
 - Investigation about hierarchies in dimensions with continuous functions
 - To investigate possibility of extending Probabilistic OLAP models to handle continuous time
- Implementation perspective
 - Fully implement relational representation of extended model and algebra
 - Extensive experimental evaluation on a real world data

The End

- 1 J. Eder and C. Koncilia. Changes of Dimension Data in Temporal Warehouses. In *DaWaK*, pp. 284-293, 2001.
- 2 P. Chamoni and S. Stock. Temporal Structures in Data Warehousing. In *DaWaK*, pp. 353–358, 1999.
- 3 A. O. Mendelzon and A. A. Vaisman. Temporal Queries in Olap. In *VLDB*, pp. 242–253, 2000.
- 4 C. S. Jensen and M. D. Soo and R. T. Snodgrass. Unifying Temporal Data Models via a Conceptual Model". "Information Systems", pp.513-547, 1994
- 5 R.H. Güting et al., Secondo: An Extensible DBMS Platform for Research Prototyping and Teaching. In *ICDE*, pp.1115–1116, 2005.

Appendix (1/2)

Mathematical notation of identity-based join operator

Given a predicate $p(f_1, f_2) \in \{f_1 = f_2, f_1 \neq f_2, true\}$, the *CT* identity-based join operator, \bowtie , is defined as follows: $M_1 \bowtie$ $[p]M_2 = (\mathcal{S}', F', D', R')$, where $\mathcal{S}' = (\mathcal{F}', \mathcal{D}')$, $\mathcal{F}' = \mathcal{F}'_1 \times \mathcal{F}'_1$, $\mathcal{D}' = \mathcal{D}_1 \cup \mathcal{D}_2, \ F' = \{(f_1, f_2, t'_f) | (f_1, t_f^1) \in F_1 \land (f_2, t_f^2) \in F_2 \land f \in \mathcal{D}_1 \cup \mathcal{D}_2, \ F' \in \mathcal{D}_2, \ F' \in \mathcal{D}_1 \cup \mathcal{D}_2, \ F' \in \mathcal{D}_$ $p(f_1, f_2) \wedge t_f^1 \cap t_f^2 \neq \emptyset \wedge t_f' = t_f^1 \cap t_f^2$, $D' = D_1 \cup D_2$, $R' = \{R_i', i = 1\}$ $1, \ldots, n_1 + n_2$, and $R'_i = \{(f', e) | f' = (f_1, f_2) \land f' \in F' \land ((i < f_1)) \land f' \in F' \land ((i < f_2)) \land ((i <$ $n_1 \wedge (f_1, e) \in R_{1i}) \vee (i > n_1 \wedge (f_2, e) \in R_{2(i-n_1)})$.

Appendix (2/2)

Mathematical notation of aggregate formation operator

Aggregate formation operator is defined as follows $\alpha[D_{n+1}, q, C_1, \dots, C_n](MO) = (S', F', D', R'),$ where: $\mathcal{S}' = (\mathcal{F}', \mathcal{D}'), \ \mathcal{F}' = 2^{\mathcal{F}}, \ \mathcal{D}' = \{\mathcal{T}'_i, i = 1, ..., n\} \cup \{\mathcal{T}_{n+1}\},$ $\mathcal{T}_i' = (\mathcal{C}_i', \sqsubset_{\mathcal{T}_i'}, \top_{\mathcal{T}_i'}, \bot_{\mathcal{T}_i'}), \ \mathcal{C}_i' = \{\mathcal{C}_{ij} \in \mathcal{T}_i | \mathcal{C}_i = \mathcal{C}_{ij} \lor \mathcal{C}_i \sqsubset_{\mathcal{T}_i} \mathcal{C}_{ij} \},$ $\sqsubset_{\mathcal{T}_i}' = \sqsubset_{\mathcal{T}_i \mid \mathcal{C}_i'}, \ \top_{\mathcal{T}_i'} = \top_{\mathcal{T}_i}, \ \bot_{\mathcal{T}_i'} = \mathcal{C}_i,$ $F' = \{Group(\vec{e}) | \vec{e} \in C_1 \times \cdots \times C_n \land Group(\vec{e}) \neq \emptyset \},$ $D' = \{D'_i, i = 1, ..., n\} \cup \{D_{n+1}\}, D'_i = (C'_i, \sqsubseteq'_i),$ $C'_i = \{C'_{ij} \in D_i | \mathcal{C}'_{ij}\} \in \mathcal{C}'_i\}, \; \sqsubseteq'_i = \sqsubseteq_{i|D'_i},$ $R' = \{R'_i, i = 1, ..., n\} \cup \{R'_{n+1}\},$ $R'_i = \{(f', e_i) | \exists \vec{e} \in C_1 \times \cdots \times C_n (f' = Group(\vec{e}) \land f' \in F') \},$ and $R'_{n+1} = \{(f', g(f')) | f' \in F'\}$