

A Probabilistic Model for Data Cube Compression and Query Approximation

R. Missaoui, C. Goutte, A.K. Choupo & A. Boujenoui

DOLAP'07 – November 9, 2007

National Research Council Canada

Conseil national de recherches Canada

Outline

- □ Introduction and motivation
- Probabilistic Data Modeling
 - Non-negative multi-way array factorization
 - Log-linear modeling
 - Rates of compression and approximation
- Experimental results
 - > Data sets
 - Compression and approximation
 - Approximate query answering
- Discussion and conclusion

Introduction

- Research on data approximation and mining in data cubes
- Some facts
 - Very large data cubes to store and process
 - Data cubes are multi-way tables
 - High dimensional cubes with possibly useless dimensions or associations among dimensions
 - ➤ Patterns (e.g., clusters, outliers, correlations) are hidden in large, heterogeneous and sparse data sets
 - Users prefer approximate answers with quick response time rather than exact answers with slow execution time

DOLAP'07

Introduction

Contribution

- Probabilistic modeling for data approximation, compression and mining in data cubes
- Focus on non-negative multi-way array factorization (NMF)
- > Potential for approximate query answering
- Comparison with log-linear modeling (LLM)

Introduction

- □ Related work
 - Cube approximation and compression
 - Barbara & Wu, Sarawagi et al., Vitter et al.
 - > Outlier detection
 - Sarawagi et al., Palpanas et al.,
 - Approximate query answering
 - Sampling (Ganti et al.), clustering (Yu and Shan), wavelets (Chakrabarti et al.)
 - Approximating original multidimensional data from aggregates
 - Iterative proportial fitting (IPF): Palpanas et al.

DOLAP'07

Probabilistic datacube modeling

- □ Assume counts in cube $X=[x_{ijk}]$ arise from a probabilistic model P(i,j,k).
- \Rightarrow X is a sample from multinomial distribution P(i,j,k).
- \square Quality of Model θ is measured by the (log-)likelihood:

$$L(\theta) = \ln P(X \mid \theta) = \sum_{ijk} \ln P(i, j, k)$$

- \square All models implement a trade-off between fit (high $L(\theta)$) and compression (number of parameters).
- We introduce one such model, NMF, and compare it to the well-known log-linear modeling (LLM).

DOLAP'07

6

Non-negative multi-way array factorization

□ Additive sum of M non-negative components:

$$P(i,j,k) = \sum_{m=1}^{M} P(m)P(i \mid m)P(j \mid m)P(k \mid m)$$

- □ Each component is a product of conditionally independent multinomial distributions.
 - ⇒ Observations behave "the same" in each component
- □ Equivalent to decomposition of multi-way array X:

$$\frac{1}{N}\mathbf{X} \approx P(i,j,k) = \sum_{m=1}^{M} \mathbf{W}^{m} \otimes \mathbf{H}^{m} \otimes \mathbf{A}^{m}$$

□ ...into non-negative factors (probabilities

$$W = [P(i,m)], H = [P(j/m)], A = [P(k/m)]$$

DOLAP'07

7

NMF (cont'd)

- Estimation by maximizing the log-likelihood, or equivalently the deviance: $G^2 = 2\sum_{ijk} x_{ijk} \ln \frac{\hat{x}_{ijk}}{x_{ijk}}$
- Expectation-Maximization(EM) algorithm
 - ⇒ Iterative algorithm with multiplicative update rules
- More components ⇒ better fit, less compression
- Model selection: finding best trade-off
- □ Use Information Criteria such as AIC or BIC

DOLAP'07

Degrees of freedom

Log-linear modeling

Decompose the log-probability as an additive sum

$$\ln P(i,j,k) = \lambda + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB} + \lambda_{ik}^{AC} + \lambda_{jk}^{BC} + \lambda_{ijk}^{ABC}$$

- 1st order (no intercatication temperature particular properties and interesting interesting in the control of t
 - Proportional Fitting.
- Parsimonious model: model that bests fit data
- Backward elimination: start with a large model and use χ^2 to test that removal of interaction yields no significant loss in fit.
- □ Other variants: forward selection, ...

DOLAP'07

Rates of compression and approximation

- \square Approximation: measured by deviance G^2 :
 - \rightarrow $G^2=0$ means perfect approximation (saturated model)
 - ightharpoonup Higher $G^2 \Rightarrow$ worse approximation
- □ Compression: How much smaller is the model?
 - > Compression rate: ratio of parameters over cells:

$$R_c = 1 - \frac{f}{N_c} = \underbrace{\frac{df}{N_c}}_{\text{number of cells}}$$

> For NMF:

$$R_c = 1 - M \frac{I + J + K - 2}{IJK}$$

number of components

Experiments: 3 datasets

	Governance	Customer	Sales
Dimensions	3 x 4 x 2 x 2	2 x 8 x 6 x 5 x 5	44 x 4 x 3
Nb. cells	48	2400	528
Nb. facts	214	10281	5191
Density	63%	37%	50%

Governance: "Toy" example but real data.

Customer: from FoodMart data in SQL Server analysis Services. Large, high-dimensional table.

Sales: also from FoodMart. One dimension with many modalities (44 product categories)

NMF and LLM in action

□ Governance cube

- > 48 cells, four dimensions: QI, Duality, USSX and Size
- Parsimonious LLM model: {QI*Size*USSX,QI*Duality}

			QΙ	
	Size	Lo	Me	Hi
USSX	1	4	10	0
=No	2	13	33	16
	3	15	17	13
	4	0	5	1
	1	0	1	2
=Yes	2	11	22	1
	3	9	12	16
	4	0	5	8

	Dua	Duality				
QI:	No	Yes				
Low	26	26				
Med	64	41				
High	47	10				

Table 6: The two sub-cubes identified by LLM as substitutes for the original data cube: QI*Size*USSX, left, and QI*Duality, right.

NMF and LLM in action

□ Governance cube

Parsimonious NMF model (3 components)

NMF and LLM in action

□ Governance cube

Parsimonious NMF model (3 components)

Comp1	Dt	JALITY:No	Ye	s	
	Size QI:Md Hi			Md	Hi
USSX	1	0	0	0	0
=No	3	0	1	0	0
	4	0	1	0	0
	1	0	2	0	0
=Yes	3	3	13	0	1
	4	1	7	0	1

Comp2	Duality=No				=Yes		
	Size	QI:Lo	Md	Hi	Lo	Md	Hi
USSX	2	5	9	0	7	12	1
=Yes	3	3	5	0	4	7	0
	4	0	1	0	1	1	0

Comp3	Duality=No				=Yes		
	Size	QI:Lo	Md	Hi	Lo	Md	Hi
	1	2	5	2	1	2	1
USSX	2	11	22	9	5	11	5
= No	3	7	15	6	4	7	3
	4	1	2	1	0	1	0

Table 2: Components of the 3-component NMF model. Cells where each component dominates are in bold. Non represented rows and columns are uniformly equal to 0.

Compression vs. approximation

GOVERNANCE	Sub- cubes	Param	$R_c(\%)$	G ²
NMF (best BIC)	2	16	66.7	56
NMF (best AIC)	3	24	50.0	35
LLM	2	26	45.8	23

CUSTOMER	$N_c = 2x8x6x5x5$	N=10281
----------	-------------------	---------

NMF (best BIC)	5	110	95.4	1020
NMF (best AIC)	6	132	94.5	917
LLM	4	567	76.4	595

SALES $N_c = 44x4x3, N = 5191$

NMF (best BIC)	8	392	25.8	715
NMF (best AIC)	-	528	0	0
LLM	-	528	0	0

- Good compression on GOVERNANCE and CUSTOMER cubes
- □ BIC: more parsimonious NMF than AIC (or LLM)
- □ LLM approximates better
- □ NMF compresses better
- □ Eg: NMF models 2400 cells in CUSTOMER with 110 parameters only!

Approximate query answering

- Query reformulation on NMF components
- □ Select a portion of the cube (*Slice* and *Dice* differ on the extent of the selection)
- □ Probabilistic model cuts the processing time as:
 - Only necessary cells need to be calculated (no need to compute entire cube).
 - Irrelevant (i.e., outside of the query scope) components may be ignored.
- Saving is important if query selects a small part of the cube and components are well distributed.

Slice and Dice (cont'd)

CUSTOMER

	Modalities						
Dimensions	Data	C1	C2	C3	C4	C5	
Status	1,2	1,2	1,2	1,2	1,2	1,2	
Income	1-8	4-8	1-3	1-3	2,3	1-4,6,8	
Children	0-5	0-5	0-5	0-5	0-5	0-5	
Occupation	1-5	4,5	1-5	1,2	1,2	4,5	
Education	1-5	1-5	3	1,2	1-3	4,5	

- Slice: (Status,Income,Children,Occupation) for customers with Education=4
 - "Slice" C1 and C5 only; add them to get the answer.
- □ *Dice*: (Status,Income,Occupation) for customers with Education=4 or 5, and Children>2
 - > "Dice" C1 and C5 only, add them to get the answer.

Approximate query answering: Roll-up

- Aggregate values over all (or subset of)
 modalities of one or several dimensions
- Easily implemented by summing over probabilistic profiles in the model
- □ For example, roll-up over dimension k:

$$\sum_{k=1}^{K} \underbrace{P(i,j,k)}_{\approx X_{ijk}/N} = \sum_{m=1}^{M} P(m)P(i \mid m)P(j \mid m) \sum_{k=1}^{K} P(k \mid m) = \sum_{m=1}^{M} P(m)P(i \mid m)P(j \mid m)$$

- Get rolled-up model "for free" from original model
- Roll-up on model much faster than on data

Roll-up (cont'd)

	Modalities						
Dimensions	Data	C1	C2	C3	C4	C5	
Status	1,2	1,2	1,2	1,2	1,2	1,2	
Income	1-8	4-8	1-3	1-3	2,3	1-4,6,8	
Children	0-5	0-5	0-5	0-5	0-5	0-5	
Occupation	1-5	4,5	1-5	1,2	1,2	4,5	
Education	1-5	1-5	3	1,2	1-3	4,5	

- Roll-up1: Income, Occupation, and Education only
 - Combine 3 probabilistic profiles (instead of 5)
- □ *Roll-up2*: Climb up the Income hierarchy [1,3],[4,5],[7,8]
 - Component C1 is irrelevant for interval [1,3]
 - ➤ Components C2 and C3 are irrelevant for [4,5] and [7,8]

Conclusion – NMF vs LLM

□ Differences

- > Better compression (but less precision) with NMF
- NMF finds homogeneous dense regions (components) in cubes and relevant members of all dimensions in components
- LLM identifies important associations between dimensions for all members of selected dimensions
- > LLM imposes more constraints (density and data size)
- NMF is more precise for selection queries while LLM seems more appropriate for aggregation queries (due to IPF)

Conclusion – NMF vs LLM

Similarity

- Probabilistic modeling
- Approximation/compression and outlier detection (by comparing estimated values with actual data)

Complementarity

NMF and LLM are therefore complementary techniques

Conclusion

□ Future work

- Incremental update of a precomputed model when new dimensions or dimension members are added
- Use NMF to identify dense components that are further modeled with LLM
- Efficient implementation of model selection procedures for NMF and LLM
- Experimentation on very large data cubes (e.g., DBLP data)

References

- Daniel Barbara and Xintao Wu. Using loglinear models to compress datacube. In Proceedings of the First International Conference on Web-Age Information Management, p. 311–322, London, UK, 2000. Springer-Verlag.
- Cyril Goutte, Rokia Missaoui & Ameur Boujenoui. Data Cube Approximation and Mining using Probabilistic Modelling, Research Report # 49284, ITI, CNRC, 20 pages, March 2007.
 http://iit-iti.nrc-cnrc.gc.ca/iit-publications-iti/docs/NRC-49284.pdf
- □ Themis Palpanas, Nick Koudas, and Alberto Mendelzon. Using datacube aggregates for approximate querying and deviation detection. IEEE TKDD,17(11):1465–1477, 2005.
- □ Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven exploration of olap data cubes. In EDBT '98: Proceedings of the 6th ICDT, p. 168–182, London, UK, 1998. Springer-Verlag.
- □ J.S.Vitterand and M.Wang. Approximate computation of multidimensional aggregates of sparse data using wavelets. In Proceeding of the SIGMOD'99 Conference, pages193–204,1999.