RLH: Bitmap Compression Technique
Based on Run-Length and Huffman
Encoding

Michat Stabno
Poznan University of Technology, Institute of Computing Science, Poland

QXL Poland
Michal .Stabno@allegro.pl

Robert Wrembel

Poznan University of Technology, Institute of Computing Science, Poland
Robert.Wrembel@cs.put.poznan.pl

Presentation Outline

<2 Bitmap index - concept and main characteristics
2 Reducing size of bitmap index

2 Run Length Huffman compression algorithm

2 Run Length Huffman experimental evaluation

< Summary

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 2/26

Bitmap Index

< Composed of bitmaps

> A bitmap is a vector of bits
= every value from a domain has its own bitmap Clients bitmap index

= 1D | sex female al

= the number of bits = the number of records |——— —t
= a given bit corresponds to a given record 2 | female 1 0
3 female 1 0
4 female 1 0
h male 0 1
< Basic characteristics 2 mz 3 i
= Efficient in answering equality and g iema-ie i g

H s emale

range queries —t— - -
= BI size depends on the cardinality of an 11 | male 0 1
= d d tt -b t 12 male 0 1
indexed attribute — - =
 large for high cardinality attributes 14 | female L 0
15 | female 1 0
16 male 0 1
17 | female 1 0
18 female 1 0
19 female 1 0

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 3/26

Reducing BI Size

< Binning
= [Kou00, SWS04, RSWO05]

2 Encoding
= [WuBu98, Chlo99]

> Compressing
= Byte-alighed Bitmap Compression [AnZi96]
= Word-Aligned Hybrid [SWS02, WOS04]
= Approximate Encoding [ACFT06]
* may create false positives, additional verification
= Reordering [JKCKV04, PTFO5]

o computationally very complex
e reordering heuristics

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 4/26

Bitmap Compression (1)

> Byte-aligned Bitmap Compression (BBC)
> Word-Aligned Hybrid (WAH)
<> Based on the run-length encoding

= homogeneous vectors of bits are replaced with a bit
value (0 or 1) and the vector length

= 0000000 1111111111 000 = 07 1 O

< BBC and WAH

= a bitmap is divided into words
e BBC uses 8-bit words
e WAH uses 31-bit words

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 5/26

Bitmap Compression (2)

S WAH-compressed bitmaps are larger than BBC-
compressed ones

S Operations on WAH-compressed bitmaps are faster
than on BBC-compressed ones [SWS02, WOS02,
WO0S04]

S Our further focus is on comparing WAH to our
approach

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 6/26

WAH 1)

a) an example bitmap being compressed (5456 bits)

100000....000000111 0000111||DDDOOUDDUDDDDOUDDDUO..........DDUDODDOOUEWDUH M1 1111111111101 111J
| L

31 bits 5394 bits having value "0" 31 bits
b) dividing the bitmap into 31-bits groups
| 31 bits | 31 bits —— 31 bits

group 1 group 2 group 176
c) merging adjacent homogeneous groups

31 bits ‘ 174 * 31 bits 31 bits

group 1 group 2-175 group 176
d) group encoding by means of a 32-bits word
\u100000......0001110000111” | 1uPun...uo1o1o1110 \u|0011111111......1111011111||

31 bits ofthe first group fill length 174 * 31 bits 31 bits of the last group
bit=0: tail word bit=0: fll value bit=0: tail word
bit=1: fill word
run 1 run 2

2 Example taken from [StWuO07]

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 7126

WAH (2

1. For low cardinality attributes bitmaps are dense
= many homogeneous 31-bit words filled with 1

2. For high cardinality attributes bitmaps are sparse
= many homogeneous 31-bit words filled with 0

3. For medium cardinality attributes
= the number of homogeneous 31-bit words is lower
= the compression ratio decreases

< A need for bitmap compression technique suitable
for medium cardinality attributes

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 8/26

Our Approach: RLH

2 RLH - the Run-Length Huffman Compression

> Based on
= the Huffman encoding
= a modified run-length encoding

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 9/26

Huffman Encoding

> Concept
= original symbols from a compressed file are replaced
with bit strings

= the more frequently a given symbol appears in the
compressed file the shorter bit string for
representing the symbol

= encoded symbols and their corresponding bit strings
are represented as a Huffman tree

= the Huffman tree is used for both compressing and
decompressing

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 10/26

RLH)

<2 Modified run-length encoding

= measures and encoded distances between bits of
value 1

1 0 O 3 0] 3 OO0 1 00O
—— "
1011100011 00011101111

Clients bitmap index
ID | sex temale | male
1 male 0 1
2 female 1 0
3 female 1 0
4 femal i -
L [Tomale | [T 17 female: 100303001000
6 male 0 1
7 male 0 1
8 tfemale 1 0
O or 2 | w— o male: 030020033
male 0 1
11 | male 0 1
12 | male 0 1 - - -
T fomale | [T 0 2 Bitmaps encoded this way are input for the
14 emale 1 0 -
15 | female 1 0 HUffman enCOdlng
16 | male 0 1
17 | female 1 0)LAP 2007, Portugal 11/26
18 | female 1 0
19 | female 1 0

RLH 2

2 Huffman encoding

= stepl: computing frequencies of symbols (distances)
in encoded bitmaps

distance | frequency

female: 100303001000 D il
male: 030020033 - &
2 1

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 12/26

RLH (3)

2 Huffman encoding

= step2: building a Huffman tree

B 1191
Q—0 0~
distance | frequency SN —
0 7] o (318)— 0 /\
1 2 Y
5 T '\j [2

[

\7 \j‘/
I\\Eﬂ

f"f-\l

distance code
0 0
3 10
1 110
2 111

= an encoded symbol is represented by a path from the

root to a leaf

M. Stabno, R. Wrembel: DOLAP 2007, Portugal

13/26

RLH 9

2 Huffman encoding
= step3: replacing distances with their Huffman codes

distance code
0 0
3 10
1 110
2 111

compressed bitmap for sex="female’
110 0 0 10 O (|10 O O 110 O 0

A DA A A AN AN) A
A T A [1 T
1 00 30 3001 0 O

—"
[

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 14/26

Experimental Evaluation

< Comparing RLH, WAH, and uncompressed bitmaps
with respect to

= bitmap sizes

= query response times
> Implementation in Java

= data and bitmap indexes stored on disk in OS files
> Experiments run on

= PC, AMD Athlon XP 2500+; 768 MB RAM; Windows XP
< Data

= 2000 000 indexed rows

» indexed attribute of type integer
e cardinality from 2 to 1000
e randomly distributed values

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 15/26

WAH and RLH: indeXx sizes

1000

R s
—B— no compression
—— 1/ A H
—e— | H
100000000 +
)
a
ﬁ Q000000 +
k3
O
=
£
1000000 ~
attr.cardinality | syw iy /Srr o
2 1.03
5 1.42
J_O 2].8 1[:]0[:][:][:] T T T T T T T T 1
20 343 2 3] 10 20 50 100 200 500
50 5.18 cardinality of indexed attribute
100 H.88
=tk e < cardinality increases = size of RLH bitmaps
] . -
000 T increases more slowly than WAH
M. Stabno, R. Wrembel: DOLAP 2007, Portugal

16/26

WAH and RLH: response times

select ... from ...
< Query _ _ _
where i1nd_attribute 1n (vl1, v2, ..., v100)
00D rmmmmm ool
—B— no compression
0 S e ——WAH |
—i—RLH
60000
I
E,
o 50000
E
& 40000
E
o attr. card. | t0VAHIARELH]
g 30000 5 s
5 1,03
20000 11 1 B0
20 2 55
10000 500 398
100 415
0 200 413
2 5 10 20 50 100 200 500 1000 ol Shil
cardinality of indexed attribute 1000 354

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 17/26

Updating RLH Bitmaps

> Costly process
= decompressing the whole bitmap
= modifying the bitmap
= compressing the bitmap
2 Updating a RLH bitmap
= changes frequencies of distances between 1 bits
= creates new distances between 1 bits
= requires building a new Huffman tree

< In a DW environment index structures
= are dropped before loading a DW
= are recreated after loading is finished

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 18/26

RLH1024 Compression (1)

1. Dividing a bitmap into 1024-bit sections

= constructing one Huffman tree based on frequencies
of distances from all 1024-bit sections

00111010..... T1111010..... | seesssesssmssnnn. 01110000.....
1024 bits 1024 bits 1024 bits
OOW
o o
/ !
0 Q1 0 Q
O Y) O O O

2. Including in the HT all possible distances that may
appear in a 1024-bit section

= non-existing distances have assigned the frequency
of 1

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 19/26

RLH1024 Compression (2)

> Advantages

* including all the possible distances in the HT
eliminates the need of rebuilding the HT after such a
bitmap update that results in a new distance

= 1024-bit sections can be read and processed in
parallel

= in order to update a bitmap, only an appropriate
1024-bit section has to be read and uncompressed

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 20/26

RLH and RLH1024: indeXx sizes

100 000 000 mmmnr7mm =578 m s == e el seelloieesoiesse

—r—RlH —e—=RLH-1024 —a=\\AH

10000 000

dex size [B]

1000000 -

in

1[:][:] DI:I[:I 1 1 1 1 1 1 1 1 1

2 3] 10 20 50 100 200 500 1000
cardinality of indexed attribute

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 21/26

RLH and RLH1024: response times

- select ... from ...
Query where i1nd_attribute 1n (vl1, v2, ..., v100)

BO000 memmrm =7 =7l

O —a—RLH ==—=RLH1024 —#=\WAH |-

BO000

20000 H

40000 -

30000 -+

response time [ms]

20000 -+

10000 +

2 5 10 20 50 100 200 500 1000
cardinality of indexed attribute

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 22/26

Summary

<> Alternative bitmap compression technique based
on the run-length encoding and on Huffman
encoding
= RLH

= RLH1024 |
< Observations T
= RLH offers a higher efficiency in accessing data thén \
WAH for attribute cardinality from 5 to 1000 ST

= Bitmaps compressed with RLH are much smaller than—
corresponding bitmaps compressed with WAH for :~ -
attribute cardinalities>10 . °

= RLH1024 offers a data access time characteristic]
similar to RLH, but additionally RLH1024 may better \
support bitmap updates IR

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 23/26

Ongoing and Future Work

2 Ongoing
= evaluating the impact of values distribution on WAH
and RLH
= evaluating other than 1024-bit partition schemes

= evaluating the efficiency of updating bitmaps in RLH
and RLH1024

< Future
= developing a cost model for RLH

= developing a framework for selecting the most
efficient bitmap partition scheme for RLH

= developing a framework for selecting the most
efficient bitmap compression technique for a given
data characteristic

= experimentally comparing BBC, WAH, RLH, and AE
= integrating RLH into FastBit

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 24/26

References (1)

2 Binning
¢ [Kou00] Koudas N.: Space Efficient Bitmap Indexing. CIKM, 2000
e [SWS04] Stockinger K., Wu K., Shoshani A.: Evaluation Strategies for Bitmap
Indices with Binning. DEXA, 2004
e [RSWO05] Rotem D., Stockinger K., Wu K.: Optimizing Candidate Check Costs
for Bitmap Indices. CIKM, 2005

2 Encoding
e [WuBu98] Wu M., Buchmann A.P.: Encoded Bitmap Indexing for Data
Warehouses. ICDE, 1998
e [ChIo99] Chan C.Y., Ioannidis Y.E.: An Efficient Bitmap Encoding Scheme for
Selection Queries. SIGMOD, 1999

> Compressing

= BBC
e [AnZi96] Antoshenkov G., Ziauddin M.: Query Processing and Optimization in
ORACLE RDB. VLDB Journal, 1996

= WAH

e [SWSO02] Stockinger K., Wu K., Shoshani A.: Strategies for Processing ad hoc
Queries on Large Data Sets. DOLAP, 2002

e [WOS04] Wu K., Otoo E.]J., Shoshani A. (2004): On the Performance of Bitmap
Indices for High Cardinality Attributes. VLDB, 2004

e [StWu07] Stockinger K., Wu K.: Bitmap Indices for Data Warehouses. In
Wrembel R. and Koncilia C. (eds.): Data Warehouses and OLAP: Concepts,
Architectures and Solutions. IGI Global, 2007

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 25/26

References (2)

2 Compressing

= Approximate Compression with Bloom Filters

e [ACFTO06] Apaydin T., Canahuate G., Ferhatosmanoglu H., Tosun, A. S.:
Approximate encoding for direct access and query processing over
compressed bitmaps. VLDB, 2006

= Reordering
¢ [JKCKVO04] Johnson D., Krishnan S., Chhugani J., Kumar S.,
Venkatasubramanian S.: Compressing Large Boolean Matrices Using
Reordering Techniques. VLDB, 2004
e [PTFO5] Pinar A., Tao T., Ferhatosmanoglu H.: Compressing Bitmap Indices
by Data Reorganization. ICDE, 2005

< WAH vs. BBC

e [SWSO02] Stockinger K., Wu K., Shoshani A.: Strategies for processing ad hoc
queries on large data warehouses. DOLAP, 2002

e [WOS02] Wu K., Otoo E.]., Shoshani A.: Compressing bitmap indexes for
faster search operations. SSDBM, 2002

e [WOS04] Wu K., Otoo E.]J., Shoshani A.: On the Performance of Bitmap
Indices for High Cardinality Attributes. VLDB, 2004

M. Stabno, R. Wrembel: DOLAP 2007, Portugal 26/26

	RLH: Bitmap Compression Technique Based on Run-Length and Huffman Encoding
	 Presentation Outline
	Bitmap Index
	Reducing BI Size
	Bitmap Compression (1)
	Bitmap Compression (2)
	WAH (1)
	WAH (2)
	Our Approach: RLH
	Huffman Encoding
	RLH (1)
	RLH (2)
	RLH (3)
	RLH (4)
	Experimental Evaluation
	WAH and RLH: index sizes
	WAH and RLH: response times
	Updating RLH Bitmaps
	RLH1024 Compression (1)
	RLH1024 Compression (2)
	RLH and RLH1024: index sizes
	RLH and RLH1024: response times
	Summary
	Ongoing and Future Work
	References (1)
	References (2)

