Partition-Based Workload Scheduling in Living Data Warehouse Environments

DOLAP 2007
Lisbon, Portugal

Maik Thiele, Ulrike Fischer and Wolfgang Lehner
Dresden University of Technology, Germany
Database Technology Group
Real-Time Warehousing (I): Push/Pull Principle

- **Pull Principle**
 - Process control by data warehouse
 - Pull the data from the data sources

- **Push Principle**
 - Process control by operative data sources
 - Automatically load data changes into the data warehouse
• **Why Scheduling?**
 - Continuous flow of write-only updates and read-only queries
 \(\rightarrow\) compete for system resources
 - No concurrent read/write transactions through push principle
 - Users expect
 - short response times and
 - high freshness of data
Partition-based Workload Scheduling in Living Data Warehouse Environments

First-level scheduling:

\[\sum_{u_i} QoS \leq \sum_{QoD} \]

Second-level scheduling:

\[QoS < QoD \quad QoS = QoD \quad QoS > QoD \]

WINE - Workload Balancing Unit

DWH

Staging Area

queries

updates

q_i

u_i

...
Workload Model
- Workload W consists of
 - Read-only queries $q \in W_q$
 - Write-only updates $u \in W_u$

\[
W_q \cup W_u = W
\]
- Each query and update is extended by
 - A position in the query/update queue $pos_{q/u}$
 - A timestamp $t_{q/u}$
- Each query is extended by a vote pair (qos_q, qod_q) where
 - $qos_q / qod_q \in [0,1]$, $qos_q + qod_q = 1$
• **Issue**
 - Find correlations between queries and updates to measure the freshness of a query q (number of unapplied updates)

• **Naïve Approach**
 - Treat whole DWH as one large data item \(\rightarrow \) each query affected by each update

• **Our Approach**
 - Divide DWH into a set of disjoint partitions \(P \)
 \[\text{DWH} = \{p_i|1 \leq i \leq n\}, \ n \text{ is the number of partitions} \]
 - Each query q touches one or more partitions, \(|P_q| \geq 1 \)
 - Each update u modifies data only within one partition at the same time, \(|P_u| = 1 \)
 - Number of unapplied updates at partition p is \(uu(p) \)
• **QoS Metric**
 - Average retention time, i.e. average time between the arrival \(t_q \) and the execution of each \(q \in W_q \)

\[
QoS(W) = \sum_{q_i \in W_q} \frac{rt_{q_i}}{|W_q|}
\]

• **QoD Metric**
 - Lag-based approach
 - QoD metric for a query \(q \)

\[
QoD(q) = \min_{p_i \in P_q} \left(\frac{1}{1 + uu(p_i)} \right)
\]

/* most out-dated partition */

- QoD metric for the whole workload \(W_q \)

\[
QoD(W) = \frac{1}{|W_q|} \sum_{q_i \in W_q} QoD(q_i)
\]
Optimization Goal

- **Optimization Goal**
 - Minimize retention time (QoS metric) for each query $q \in W_{qos}$,

 where $W_{qos} = \{ q \in W_q \mid qos_q \geq 0.5 \}$

 - Maximize freshness (QoD metric) for each query $q \in W_{qod}$,

 where $W_{qod} = \{ q \in W_q \mid qod_q > 0.5 \}$

- **Note**
 - QoS and QoD metric are not comparable
Query Priorization
- Sort queries in descending order of their QoS values
- Queries with a high QoS value are favored by the system
- Queries with a low QoS value are delayed in execution
 → avoid starvation by increasing the QoD value by

\[
d = \frac{1}{|Q| \cdot T_{\text{max}}}
\]

maximum retention time

at each clock tick

![Query Priorization Diagram]

Legend
- **q_i:** Query
- **QoS:** Quality of Service
- **QoD:** Quality of Delay
• **Update Priorization**
 - Prioritize updates whose corresponding queries will be executed soon
 - Weight \(w(u) \) for an update \(u \)
 \[
 w(u) = \sum_{\forall q_i, |P_{q_i} \cap P_u| = 1} \frac{qod_{q_i}}{1 + pos_{q_i}}
 \]
 - Sort update queue in decreasing order of the resulting weights \(w_u \) and in increasing order of the timestamps \(t_u \)
 - Timestamp preserves original update order (consistency)
 → two updates \(u_i \) and \(u_j \)
 - refer to the same partition
 - same weight \((w(u_i) = w(u_j)) \)
 - \(t_{ui} < t_{uj} \) → \(u_i \) executed first
Second-Level Scheduling: Example

Query queue:

- q₀ : D
 - 0.2 0.8
- q₃ : B
 - 0.4 0.6
- q₅ : B
 - 0.6 0.4
- q₁ : A
 - 0.7 0.3
- q₄ : C
 - 0.9 0.1
- q₂ : A
 - 0.9 0.1

Update queue:

- u₄ : C
 - 0.05
- u₂ : A
 - 0.20
- u₃ : B
 - 0.22
- u₁ : B
 - 0.22
- u₀ : B
 - 0.22

\[\frac{1}{1 + 2} \]
\[\frac{1}{1 + 2} \]

A
B
C
Experimental Setup

Load
- **Low**: every 2s 10 queries, 10 updates with variance of 5
- **Medium**: every 1.5s 10 queries, 10 updates with variance of 5
- **High**: every 1s 10 queries, 10 updates with variance of 5

Middleware (Java 1.5)
- Wine
- FIFO
- FIFO-QH
- FIFO-UH

Database (IBM DB2 V9.1)
- TPC-DS (web returns, 72,176)
- manufact_id

System Specifications
- Intel Pentium D 3.0 GHz
 - 2 GB RAM
 - Windows XP
- Xeon 64 Bit 2.8 GHz
 - 4 GB RAM
 - Linux
WINE and FIFO-QH exhibit no unapplied updates.
FIFO-QH has the most unapplied updates, which increase with rising load.
FIFO has some unapplied updates, number remains stable with increasing load= average case.
Evaluation (II) – Adaptability to User Requirements

LOW workload, alternating user preference

\(<\text{QoS}, \text{QoD}> = <0.1, 0.9> \rightarrow <0.9, 0.1> \rightarrow \ldots \) each 25 sec
Evaluation (III) – Adaptability to User Requirements

LOW workload, alternating user preference

\(<QoS, QoD> = <0.4, 0.6> \rightarrow <0.6, 0.4> \rightarrow \ldots \) each 25 sec
Evaluation (IV) – Adaptability to User Requirements

HIGH workload, alternating user preference

\[<QoS, QoD> = <0.1, 0.9> \rightarrow <0.9, 0.1> \rightarrow \ldots \text{each 20 sec} \]
Summary and Conclusion

- **Summary**
 - Living DWHs manage continuous flows of updates and queries
 - Extended user model required due to new real-time aspects
 - Conflicting demands
 - short response times \leftrightarrow data freshness
 - WINE: two-level-scheduling algorithm
 - Comparison to three baseline approaches (FIFO-*)
 - WINE outperforms all other approaches under different workloads and changing trends in user requirements

Questions?
Partition-based Workload Scheduling in Living Data Warehouse Environments

DOLAP 2007
Lisbon, Portugal

Maik Thiele, Ulrike Fischer and Wolfgang Lehner
Dresden University of Technology, Germany
Database Technology Group
Evaluation (V) – Adaptability to User Requirements

![Graph showing adaptation of workload scheduling to user requirements over time.](image-url)