Deciding the Physical
Implementation of ETL
Workflows

Vasiliki Tziovara

Panos Vassiliadis

Univ. of loannina

=== Alkis Simitsis

Almaden Research Center

Roadmap

e Background & problem formulation
* General solutions & improvements
e Experiments & results

e Conclusions & future work

DOLAP'07 Lisbon, Portugal, 2007-11-09

Roadmap

e Background & problem formulation
* General solutions & improvements
e Experiments & results

e Conclusions & future work

DOLAP'07 Lisbon, Portugal, 2007-11-09

ETL workflows

Add_SPK

D DS.PS,.PKEY
DS.PS_NEW, . PKEY, : !
COST DATE
> A2EDate
rejected rejected

LOOKUP_PS.SKEY
. . SUPPKEY=1 — !
DS.PS_OLD, . PKEY SUPPKEY
LOOKUP_PS.SKEY, DATE=SYSDATE
SUPPKEY

DS.PS_OLD rejected
i
g
- 2 DS.PS_NEW,.PKEY, DS.PS,.PKEY,

DS.PS_OLD, . PKEY

Add_SPK

rejected rejected

DS.PS_OLD
2

v

DSA

PKEY, MONTH

DW . PARTSUPP . DATE
! AVG (¢OST)

S, PARTSU
PP

PKEY, DAY
MIN (GOST)
PP

sources DW

DOLAP'07 Lisbon, Portugal, 2007-11-09 4

Fundamental research question

 Now: currently, ETL designers work
directly at the physical level (typically, via
libraries of physical-level templates)

e Challenge: can we design ETL flows as
declaratively as possible?

e Detail independence:
— no care for the algorithmic choices

— no care about the order of the transformations

— (hopetully) no care for the details of the inter-
attribute mappings

DOLAP'07 Lisbon, Portugal, 2007-11-09 5

Now:

i)

Involved
data stores

Y

Physical

Physical

templates

scenario

Engine

DOLAP'07 Lisbon, Portugal, 2007-11-(9

Vision:

i)

Involved
data stores

Y

Physical

Physical

templates

scenario

Engine

DOLAP'07 Lisbon, Portugal, 2007-11-(

9

ETL tool

Conceptual to
logical mapper

Logical

templates

Optimizer

Physical

templates

Engine

mapping

Conceptual to logical @

Logical

scenario

V

Physical

scenario

Detail independence

(@

)

Automate

(as much as possible)

Conceptual: the
details of the inter-
attribute mappings

Logical: the order of
the transformations

Physical: the
algorithmic choices

/

DOLAP'07 Lisbon, Portugal, 2007-11-09

ETL tool

Conceptual to
logical mapper

Logical

templates

Optimizer

Physical

templates

Engine

Schema

mappings

Conceptual to logical

mapping

>
=

Logical

scenario

V

Physical

scenario

ETL tool

Conceptual to
logical mapper

Conceptual to logical

mapping

v

Logical

templates

Logical
scenario

Optimizer
I [
Physical
templates Physical
scenario
Engine
1-09

-
D R S >
mappings

“1dentify the best
possible physical
implementation
for a given logical
ETL workflow”

Problem formulation

e Given alogical-level ETL workflow Gt
e Compute a physical-level ETL workflow GF
* Such that

— the semantics of the workflow do not change
— all constraints are met

— the cost is minimal

DOLAP'07 Lisbon, Portugal, 2007-11-09

10

Problem formulation

e Given alogical-level ETL workflow Gt

e Compute a physical-level ETL. workflow G
* Such that

— the semantics of the workflow do not change

— all constraints are met

— the cost is minimal

DOLAP'07 Lisbon, Portugal, 2007-11-09

11

ETL workflows

e We model an ETL workflow as a directed
acyclic graph G(V,E).
— Each node veV is either an activity a or a
recordset 7.

— An edge (4,b)eE denotes that b receives data
from node a for further processing.

DOLAP'07 Lisbon, Portugal, 2007-11-09 12

Templates

e Logical & physical LOGICAL - LEVEL TEMPLATE

1. Semantics (abstract): o, .
templates of T
.. . LOGICAL - LEVEL INSTANCE
activities, aid the

1. Semantics (concrete): 0.5,

designer specity the PHYSICAL - LEVEL TEMPLATE

scenario faster A. Order-aware implementation
Precondition (abstract): {$1 desc}

® 1N mapplng Of B. Order-free implementation

logical to physical Precondition (abstract): {}

m appings PHYSICAL - LEVEL INSTANCE
1. Semantics (concrete): 0.5

2. Precondition (concrete): {A desc}

DOLAP'07 Lisbon, Portugal, 2007-11-09 13

Problem formulation

e Given alogical-level ETL workflow G-
e Compute a physical-level ETL workflow GF
* Such that

— the semantics of the workflow do not change

— all constraints are met

— the cost is minimal

DOLAP'07 Lisbon, Portugal, 2007-11-09

14

Semantics and constraints

e All recordsets, activities and provider
links are mapped to their physical
representations

— Templates act as intermediaries here

e All preconditions are met
— E.g., the input to a physical activity requiring
a certain ordering of the incoming tuples,
must obey the necessary ordering

DOLAP'07 Lisbon, Portugal, 2007-11-09 15

Problem formulation

e Given alogical-level ETL workflow G-
e Compute a physical-level ETL workflow GF
* Such that

— the semantics of the workflow do not change
— all constraints are met

— the cost is minimal

DOLAP'07 Lisbon, Portugal, 2007-11-09

16

Cost model

e We employ a simple Cost(G)
cost model

Z cost(a;)
i=1

e For black-box costo (z) = m; X cpt(i)

activities, obtain cost
per tuple via micro-
benchmarks

DOLAP'07 Lisbon, Portugal, 2007-11-09

17

Solution

* We model the problem of finding the physical
implementation of an ETL process as a state-space search
problem.

o States. A state is a graph G' that represents a physical-
level ETL workflow.

— The initial state G,' is produced after the random assignment of
physical implementations to logical activities w.r.t.
preconditions and constraints.

e Transitions. Given a state GF, a new state GI' is
generated by replacing the implementation of a physical
activity a” of GF with another valid implementation for
the same activity.

— Extension: introduction of a sorter activity (at the physical-
level) as a new node in the graph.

DOLAP'07 Lisbon, Portugal, 2007-11-09 18

Roadmap

e Background & problem formulation
e General solutions & improvements

e Experiments & results
e Conclusions & future work

DOLAP'07 Lisbon, Portugal, 2007-11-09

19

Algorithmic alternatives

e Exhaustive approach to the simple variant

problem (without any sorters introduced)
e Straightforward

e Sorter introduction

— Intentionally introduce sorters to reduce
execution & resumption costs

e Not covered in this paper:
— Heuristics
— Failures as part of the problem

DOLAP'07 Lisbon, Portugal, 2007-11-09 20

Sorters: impact

o We intentionally introduce orderings, (via appropriate
physical-level sorter activities) towards obtaining physical
plans of lower cost.

e Semantics: unaffected

* Price to pay:
— cost of sorting the stream of processed data
e Gain:
— it is possible to employ order-aware algorithms that significantly
reduce processing cost

— Itis possible to amortize the cost over activities that utilize
common useful orderings

DOLAP'07 Lisbon, Portugal, 2007-11-09 21

Sorter gains

100000

1
10000
- Oa<600

sel4=0.1

e Without order
— cost(o;)) =n
— costso(Y) =n*log,(n)+n
e With appropriate order
— cost(o,) =sel. *n

- costgo(y) =n

DOLAP'07 Lisbon, Portugal, 2007-11-09

Cost(G) = 100.000+10.000
+3*[5.000"10g,(5.000)+5.000] =
309.316

If sorter S, pis added to V:

Cost(G’) = 100.000+10.000
+2%5000+[5.000*10g,(5.000)+5.000]
= 247.877

22

Sorters: the issues

* 3 main issues:
— Candidate positions for introducing sorters?
— Over which attributes should we order?
— Ascending or descending order?

DOLAP'07 Lisbon, Portugal, 2007-11-09

23

Candidate positions for sorters

* 3 possible positions
— Source recordsets

— DSA recordsets
— Edges between activities

DOLAP'07 Lisbon, Portugal, 2007-11-09

24

Candidate positions for sorters

(a)

1
R —»| Oas50 (d)
3

e Recordsets:

— Source
— DSA table

 Edges among activities
Here: positions (a)-(d)

DOLAP'07 Lisbon, Portugal, 2007-11-09 25

Over which attributes should we
order the data?

* Interesting order:

— Traditionally: a set of attributes present in the join, grouping,
and ordering conditions of a query.

— Here: a set of attributes such that, an ordering of the data over
them can lead to a cheaper evaluation plan for a query.

e Automatic derivation of interesting orders is possible
with a little extra help at the template level ©

— For each order-aware template, we need to define a set of
(parameterized) input attributes which act as a precondition for
the template to be used.

— In other words: if the incoming stream is sorted over these
attributes, then the implementation can be used

— The interesting order is this list of attributes

DOLAP'07 Lisbon, Portugal, 2007-11-09 26

Interesting orders

* Interesting orders for sorters placed between
subsequent activities a and b

— the interesting orders of the implementations of b

determine the ordering X imposed by the sorter Sy.

* Interesting orders for sorters placed over
relations

— Discover the interesting orders of the activities that
receive data from the relation.

— Combine all i.0.”s into a single set with each
interesting order considered once in the set.

DOLAP'07 Lisbon, Portugal, 2007-11-09

27

Interesting orders /s~

Oa<300
< >

N
3

¥

Ya
e A is defined by the e Decide interesting
interesting orders of b orders of activities
receiving data from R
e Union {A_, A, B}
e Result: {A,,, B}

DOLAP'07 Lisbon, Portugal, 2007-11-09

Interesting orders

100000
1
10000
- Oa<600
sel4=0.1
A asc A desc {A,B, [A,B]}

DOLAP'07 Lisbon, Portugal, 2007-11-09 29

Interesting orders for ETL
activities

e (Can be defined at the
template level!

e Customizable per scenario
— See on the right

e Examples

— Filters: selection condition
attributes

— Join variants: join attributes

— Aggregation variants:
aggregation attributes

— Function: important
parameters that can be
defined at the template level

DOLAP'07 Lisbon, Portugal, 2007-11-09

PHYSICAL - LEVEL TEMPLATE

1. Semantics (abstract): 0y, . 4,
2. Interesting Orders (abstract):
{$1 desc}

PHYSICAL - LEVEL INSTANCE

1. Semantics (concrete): 0.5,

2. Interesting Orders (concrete):
{A desc}

30

Ascending or descending orders?

* Depends on the semantics of the activity

— O,ge > 49 T€QUIres a descending order

— 0,0 < 40 TEQUIres a ascending order

e Can be defined at the template level ©

DOLAP'07 Lisbon, Portugal, 2007-11-09 31

Algorithmic issues

* We have implemented a simple optimizer
— Based on an exhaustive algorithm
— Deals with all the aforementioned issues

— Tries to save memory, via a compact
representation of ETL scenarios: signatures

DOLAP'07 Lisbon, Portugal, 2007-11-09 32

Signatures

e Strings that act as short representations of
scenarios (for memory savings)

e Consecutive nodes connect with “.”

e Parallel paths connect with “//”. Each path is
enclosed in parentheses.

((R.1)//(S)).2.DW

DOLAP'07 Lisbon, Portugal, 2007-11-09 33

Exhaustive Ordering (EO)

e Input: a logical level graph G(V,E)
* QOutput: the signature with the minimum cost

— S, < EGS(S); < By EGS
— SuiN =Sy
— V combination c of places for sorters < By CPC
V place p
V possible order o in p < By GPO
generate a new signature S’; < By GPS

Cost(S") «— Compute_cost(S');
If (Cost(S")<Cost(Syyn)) Syn=S';

— return Sy

DOLAP'07 Lisbon, Portugal, 2007-11-09 34

Roadmap

e Background & problem formulation
* General solutions & improvements
e Experiments & results

e Conclusions & future work

DOLAP'07 Lisbon, Portugal, 2007-11-09

35

Problem in experimental setup

* When experimenting with ETL workflows
what test suites should we use?

* We have faced the problem before:

— Logical optimization of the ETL process

(transposition of activities to speed up the
workflow — ICDE05, TKDEQ5)

DOLAP'07 Lisbon, Portugal, 2007-11-09 |!6

Problem in experimental setup

e Existing standards are insufficient
— TPC-H
— TPC-DS

* Practical cases are not publishable

* We resort in devising our own ad-hoc test
scenarios either through a specific set of
scenarios which obey a common structural
pattern

DOLAP'07 Lisbon, Portugal, 2007-11-09 |!!

Q\L@ &3

Butterflies to the rescue! z %gnn
&

100000

—_— 1

u Oa<600
sel1=0.6
p;=0.003

100000

<~ 2

‘ Oa>300
sel,=0.1
p,=0.004

DOLAP'07 Lisbon, Portugal, 2007-11-09

D<A=A

sel;=0.2
p3=0001

4

4
l sel,=0.2 Ej

p4=0.001

B | n
sels=0.5

ps=0.005

38

S &

Buttertlies to the rescue! @0%%3,,
& <40

100000 4
l sel,=0.2

p4=0.001

5
I sels=0.5

5=0.005

X

DOLAP'07 Lisbon, Portugal, 2007-11-09 39

Butterflies to the rescue! S1E

%’3‘ :

A butterfly is an ETL workflow that consists of
three distinct components:

* Body: a central, detailed point of persistence
(fact or dimension table) that is populated with
the data produced by the left wing.

e Left wing: sources, activities and intermediate
results. Performs extraction, cleaning and
transformation + loads the data to the body.

* Right wing: materialized views, reports,
spreadsheets, as well as the activities that
populate them, to support reporting and
analysis

DOLAP'07 Lisbon, Portugal, 2007-11-09 40

Butterfly classes

e Butterflies constitute a fundamental pattern of
reference. Sub-components:

— Line
— Combinators
* Left-winged variants (heavy on the ETL part)

— Primary flow
— Wishbone
— Tree

* Right winged variants (heavy on the “reporting”

part)

— Fork Details at Vassiliadis et al @
* [rregular variants QDB 2007

DOLAP'07 Lisbon, Portugal, 2007-11-09 (11’1 COflj. ZUlth VLDB 2007)

Butterfly classes

DC

(a) Line b) Wishbone
:>’:>»l
(d) Tree
— e = = - By
= S |BEEES ~
B w.\yl S
—]
(e) Flat Hierarchy - Fork (f) Deep Hierarchy

42

Line

* Simplest pattern

e Observe the router #8

Not Null Sum (Profit), Sum (Ext. Price)
ﬂ)oﬁ Ku Currency (Ext. Sum (Profit), Sum (Ext. Price) Group by (Part Key) View03
art Ke .
) i D Group by (Part Key, Line Stat
Order Key, Price, Discount, Derive Fe roup by (Part Key, Line Status)

Tax)

Return Status = True Line Status <> ‘Delivered’

Item.D+

Line Status\= ‘Delivered’

19 b View02
View01

DOLAP'07 Lisbon, Portugal, 2007-11-09 43

Primary Flow

® Typical for assigning surrogate keys
to factual records

*TPC-DS only pattern

® Observe the Slowly Changing
Dimension loader

SK
(QrderStatus)

> SK (CustKey)

SK (Order Key)

> b DW.Order

SCD T1
L-ord Insert or Update

DOLAP'07 Lisbon, Portugal, 2007-11-09 44

Wishbone

®2-3 Small lines, combined via a join
variant

* Observe the quarantine for errors (#1)

PhoneFormat

Customet.

SK{(custkey) PhoneFormat

Customet.

DOLAP'07 Lisbon, Portugal, 2007-11-09 45

i Tree

} SK(custkey)

* Recursive combination of wishbones

Sort(Pkey,

UNION Insert or Update
SORTED Sum (AuailOn)

o
o
o
SK(custkey) (Pkey) Group by (Part Key)
o
o
e

} > II:> I} IE> View04
SK(custkey)

Sort(Pkey,
SuppKey)

PS3.new >

b

Insert or Update

Fork

* Heavy on reporting

View(5

Sum (Profit), Sum (Ext. Price)
Group by (Part Key, Line Status)

Sum (Profit), Sum (Ext. Price)
SK(Part Key, Date Key (Ship Currency (Ext. Derive Fne Group by (Part Key, Line Status)

. o Di
(S)m’er II<<@/, Dat;5 I?ecezpz‘ Pme,T iscount, (Profit)
np Koy) ate) @) View06

Sum (Profit), Avg (Discount)
Group by (Part Key, Supp Key)

b b View07

Avg (Profit), Avg(Ext. Price)
roup by (Part Key, Line Status)

P b View08
47

Line

Item.D+

DW.Lineitem

DOLAP'07 Lisbon, Portugal, 2007-11-09

Balanced Butterfly

K K
3 &Cpage jy’ Derive Fne
PPRY. (Total Cost)

>
<
<

View10

2
3 3
+FP

Max (S. C.), Min (S. C.) Masx (S. C.), Min (S. C.)
Group by (Nation Key, Part Key) Group by (Part Key)

SP_Supp Key =
S_Supp Key

View12

Full recomputation for
all right-wing views

Viewl3

Sum (T. C.) Group by Sum (T. C.)

Phone Format .
(Nation Key, Supp Key) Group by (Supp Key)

SK(SuppKey) (Phone)

DOLAP'07 Lisbon, Portugal, 2007-11-09 48

Experimental configuration

e Cost measures
— Estimated execution time for scenarios
— Number of produced scenarios
— Computation time
— Estimated resumption cost
— #sorters, sorters’ cost, pct of sorters’ cost over total cost

e Parameters

— amount of data arriving at the DW (by controlling the internal
butterfly selectivity)

e All the experiments were conducted on an Intel(R)
Pentium(R) running at 1,86 GHz with 1GB RAM and the
machine has been otherwise unloaded during
experiments.

DOLAP'07 Lisbon, Portugal, 2007-11-09 49

100000

Results

1 4
e
sels=0.2
seli=0.6 ‘

Number of nodes: 10
Execution time: 28 sec

p1=0.003

2 5

»
sel,=0.1 sels=0.5

Number of generated

signatures: 181 0,=0.004 ps=0.005
S id Top-10 Signatures Cost
56 | (R.1.1_3(A)/I(S.S'(A).2@S0.P)).3@MJ.V.((4@S0O.2)/[(5@S0O.W)) 2.560.021
23 | (R.1.1_3(A)I(S.2@S0.P)).3@MJI.V.((4@S0O.2)/I(5@S0O.W)) 2.560.021
50 | ((R.1)//(S.SI(A).2@S0.P)).3@HI.V.VI(A).(4@SO.2)//(5@SO.W)) 2.943.325
53 | (R.D)//(S.SI(A).2@S0.P)).3@HJ.V.VI(B).(4@S0O.2)//(5@S0O.W)) 2.943.325
11 | (R.D//(S.SY(A).2@S0.P)).3@HJI.V.(4@SO.2)/I(5@SO.W)) 2.943.325
17 | (R.D//(S.2@S0O.P)).3@HJ.V.VI(A).(4@SO.2)/I(5@SO.W)) 2.943.325
20 | (R.D)//(S.2@S0O.P)).3@HJI.V.V!(B).(4@S0O.2)//(5@S0O.W)) 2.943.325
4 | ((R.D/I/(S.2S0.P)).3@HI.V.(4@S0O.2)/I(5@SO.W)) 2.943.325
10 | ((R.D//(S.SY(A).2@S0.P)).3@SMJI.V.(4@SO.2)/I(5@SO.W)) 2.996.202
3 | ((R.L//(S.2@S0.P)).3@SMJI.V.(4@SO.2)//(5@SO.W)) 2.996.202

Results

S id Nurgcl)oretz f: Cost of Sorters Percentagce:g:tSorter
56 2 1.803.841 70%
23 1 142.877 6%
50 2 2.107.144 72%
53 2 2.107.144 72%
11 1 1.660.964 56%
17 1 446.180 15%
20 1 446.180 15%
4 0 0 0%
10 1 1.660.964 55%
3 0 0 0%

DOLAP'07 Lisbon, Portugal, 2007-11-09

51

Observations

* Butterflies with no right wing

— Not particularly improved when sorters are
involved (esp., Wishbones and Trees)

— Certain cases, in trees, where sorters might help — if
the data pushed through the involved branch has a
small size or a large number of activities share the
same interesting order.

e Sorters at the sources: too costly!

* Sorters are beneficial when a significant right
wing is present, e.g., in Forks or Deep-hierarchy
buttertlies

DOLAP'07 Lisbon, Portugal, 2007-11-09 52

Observations

e Balanced butterflies
— Many candidate positions for sorters.

— The body of the butterfly is a good candidate to place a sorter,
especially when the left wing is highly selective.

— Opverall, the introduction of sorters appears to benefit the overall
cost.

o Butterflies with a right-deep hierarchy
— Similar to BB

— The size of the right wing is the major determinant of the overall
completion cost (large no. of candidate positions for sorters).

e Forks

— Sorters are highly beneficial for forks.
— The body of the butterfly is typically a good candidate for a

sorter.

DOLAP'07 Lisbon, Portugal, 2007-11-09 53

Observations

* The best scenario is typically found early —
within the first 50-60 signatures

DOLAP'07 Lisbon, Portugal, 2007-11-09 54

Roadmap

e Background & problem formulation
* General solutions & improvements
e Experiments & results

e Conclusions & future work

DOLAP'07 Lisbon, Portugal, 2007-11-09

55

Conclusions

* We have dealt with the problem of determining
the best possible physical implementation of an
ETL workflow, given its logical-level description
and an appropriate cost model as inputs.

* We have experimented with artificially
introducing sorters in the physical
representation of the workflow

e Not covered: failures, heuristics
* Long version: Vasiliki Tziovara’s MSc

http://charon.cs.uoi.gr/~tech_report/public.php
(MT 2006-13)

DOLAP'07 Lisbon, Portugal, 2007-11-09 56

-/ Message to you

;*

o There 1s a vast, unexplored area of research on the
optimization of ETL scenarios

f’“‘“" f*

— Many open issues: order of activities, treatment of indexes,

active warehousing, ...

» We need a commonly agreed benchmark that
realistically reflects real-world ETL scenarios

Butterflies to the rescue ! I

3

iy

DOLAP'07 Lisbon, Portugal, 2007-11-09

f
X ‘I
% 3 . T

57

.
.
A
» s are imp‘ed from MS Clipart and MSDN

Auxiliary slides

Goal of this work

* The objective of this work is to identify the best

possible physical implementation for a given
logical ETL workflow

DOLAP'07 Lisbon, Portugal, 2007-11-09 60

ETL worktlows are not big queries

* Itisnot possible to express all ETL operations in terms of relational
algebra and then optimize the resulting expression as usual. In
addition, the cases of functions with unknown semantics - 'black-
box' operations- or with 'locked' functionality -e.g., an external call
to a DLL library- are quite common.

e Failures are a critical danger for an ETL workflow. The staging of
intermediate results is often imposed by the need to resume a failed
workflow as quickly as possible.

 ETL workflows may involve processes running in separate
environments, usually not simultaneously and under time
constraints; thus their cost estimation in typical relational
optimization terms is probably too simplistic.

o All the aforementioned reasons can be summarized by mentionin
that neither the semantics of the workflow can always be specified,
nor its structure can be determined solely on these semantics; at the
same time, the research community has not come-up with an
accurate cost model so far.

DOLAP'07 Lisbon, Portugal, 2007-11-09 61

Logical Optimization

1 3 7 8 9
& > A Can we push selection
early enough?

2 4 5 6 0 Can we aggregate
h P w before $2€ takes place?

Q How about naming
conflicts?

62

orldscope - Microsoft Yisual Studio

Eile

e 05 @

Edit iew Project

da

Build Debug

== Bk

Data Farmat

o e

x5
i

b

DTS

Tools Windows

r Dewelopment

Commmunity

Help

= Default -

[# path

=l

EHEBRER-

Mulkiscope.desx [Design] /Worldscope.dtsx [Design]*]

Ed Contral Flow 'H_;-;' Data Flow L"d Event Handlers |:g Package Explorer

seqieal 6 [

Data Flow Task:

Iﬂ;} Daka Flow Task

S SSIS

Yariable Length rows soimport as 1 column
and drrive out 1 Field for mass filkering

1

Compare my derived Fieldiunber colurn
against & 5CL table listing Desired Figldhumber
Met result is a filker

split small set based on a code which dickates

hiows many columns to parse

Conditional Split Default Output

Detived Colum...

Derived Colurmn Error Output

{EIJ }z Aggregate

Errﬁr Qubp

gE

Il -

Want a countisork by FigldMumber of the rows we are
discarding and those kept For downstream processing
...is there some key field number we should reconsider using??

" Multicast 1

o

1

{HJ}z Aggregate 1

I =

.

ij rows that errored fro..,

\j Count by FigldMurnber the disca. ..

=

»aE Conditional Split base...

b

F

\j Flat File Destination {rows th...

Type I

¥

Type & an

Detived Calum, ..

E Derived Column. ..

I

Mulkicask

7

i
iy RowZount

;

@ Flat File Destina. ..

‘ \j Flat File: Destinatio...

\j Count of Fields Passing Lookup

A S

@
M5 condtional spie

Split out a field # or 2 f

H

=

Row Sampling

‘ \j Flat File Destination {sample of compa. ..

B

J Connections

<

Q.CDmpanyNameSample
:ﬂ_CountOFDiscardedFields

_;lCountOFFieldsPassingLookup

_;J__DerievedCqumnFaiIures

__Q_,Local master DB
_;,i_local WsopeData

_;J__LocalecopeSampIe_Folder
= MySOLProfilerLog

_;J__MyWscopeLogFiIeConnection
= smtphost

__-_J__Source_WscopeSampIe_Folder .;'J__wscope data type & and L.bxt
_:ﬂ_stan—DX source file

=)

_::ﬂ_wscope data bvpe N

| |

Ready

Problem Formulation

Constraints

The data consumer of a recordset cannot be another
recordset. Still, more than one consumer is allowed for
recordsets.

Each activity must have at least one provider, either
another activity or a recordset. When an activity has
more than one data providers, these providers can be
other activities or activities combined with recordsets.

Each activity must have exactly one consumer, either
another activity or a recordset.

Feedback of data is not allowed; i.e., the data consumer
of an activity cannot be the same activity.

DOLAP'07 Lisbon, Portugal, 2007-11-09 65

Template customization

The designer selects a logical level template

2. The designer customizes the template with the
appropriate schemata and parameters

3. The optimizer (or the designer) chooses one of the
available implementations of the logical template
(i.e., a physical template)

4. The physical template is then appropriately
customized 3), (4)

p—

Logical P / T Logical
activity template
m (1:N) <

Physical
template

C
Physical P
activity a r

DOLAP'07 Lisbon, Portugal, 2007-11-09 66

Problem formulation

Formal definition of the problem. Given a logical-level ETL
workflow G (VY EY), where VE=AMUR, A" is the set of log-
ical activities and R 1s the set of recordsets, determine the physical-
level graph GY (VY EY), where VE=APUR, A¥ is the set of
physical activities, such that:

o al’=C(M(T(al))), al’ cAP alcAT

o Vel'=(z" y"), e"€E", 2" y"eV", introduce e to EX

P P P
o N;constr(a;)=true, a; €A
_‘ - P — f'. r'-' P P
e > cost(a;)=minimal, a; €A

DOLAP'07 Lisbon, Portugal, 2007-11-09 67

Interesting Orders

e Traditional view of interesting orders

— Sorting specification useful for determining
best left-deep query plan in traditional query
processing (Selinger et al.)

e E'TL workflows

— A list of attributes over which the input of an
activity can be sorted

— Similarly, a list of attributes for sorting
recordsets

DOLAP'07 Lisbon, Portugal, 2007-11-09 68

Transitions in the state-space

problem due to sorters

e ASR(v, R): Add Sorter on RecordSet
~ G(V,E) »G/(V,E)), s.t.
o V' =Vu{v}
e =R, v), e'=(v,R), E'=E Ue’Ue”

e ASK(v, a, b): Add Sorter on Edge
~ G(V,E) »G/(V/,E), s.t.
o V' =Vu{v}
e Remove (a, b)

* Ve e E uee=(a, b) insert e’=(a,v) and
e”’=(v, b). Le., E'=E we'ue”- e.

DOLAP'07 Lisbon, Portugal, 2007-11-09

I Sorter

Algorithmic Issues

'07 Lisbon, Portugal, 2007-11-09

70

Algorithm: Exhaustive Ordering (EO)

Input: An logical graph G* = (V. E¥) with n nodes
Output: A signature Sas;~ having minimal cost

1 Begin
2 So «— Compute_Signature
3 Cost(So) «— Compute_Cost(So), Smin = So
4 Let D be a dictionary that contains signatures and
respective costs, add Sp and C'ost(Sp) to D
5 LetI' = {v1,72,...,7m} be the set of all possible
combinations of candidate positions for sorters
6 Given avel', let Py ={p~y .P~yqs- - -+ Py, } DE the set of
possible positions of combination ~y
7 Given a position p~, let Ocs = {01,02,. .., on } be the set
of candidate sorters over p-, (including no sorter)
8 Foreach~ € I' {
9 Foreach p., € F. {
10 Foreacho € O, {
11 generate a new signature S’
12 If(S"¢ D) {
13 Cost(S") «— Compute_Cost(S")
14 Store S’ and C'ost(S") to D
15 If (Cost(S") < Cost(Sarin)) {
16 Smin =8’
17 1}
18 3
19 Return Sarrw
20 End

Exhaustive

Ordering
(EO)

71

Signature Generation

e Algo GSign by [SiVS04]
e Extension of GSign -> EGSign with:
— many targets

— Usage of DSA tables

— Incorporation of the physical-level layers
e e.g., R1.V.((2@NL.W)//(3.Z))

— Incorporation of sorters
e e.g, R1.1_2(A,B).2.V.((3.W)//(4.2))
e e.o, RI1V.VI(AB).((2.W)I(3.2))

DOLAP'07 Lisbon, Portugal, 2007-11-09

72

GSign vs EGSign

Algorithm Get Signature (GSign)

1. Input: A state S, i.e., a graph G=(V,E), a state S’
with edges in the reverse direction than the ones
of S, and a node v that is a target node for the
state S

2. Output: The signature sign of the state S

3. Begin

4. Id € find the Idof v;

5. sign = "." + Id + sign;

6. if (outdeg(v)==2) {

7 vl € next of v with the lowest Id;
8. GSign(S,vl,sl);

9. v2 € next of v with the highest Id;
10. GSign(S,v2,s2);

1. sign="(("+s1+")//("+s2+"))"+ sign;
12. }

13. else if (outdeg(v)==1) {

14. v € next of v;

15. GSign (S, v,sign);

16. }

17. sign = sign.replace all (" (."," (")
18. End.

Algorithm Extended GSign (EGS)

1. Input: A state S, i.e., a graph G=(V,E), a state S’
with edges in the reverse direction than the ones
of S, and a set T with the target nodes for the
state S

2. Output: The signature sign of the state S
3. Begin

4. n = 0;

5. for each v in T {

6 GSign (S,v,C[n]);

7 n++;

8. }

9. if (n==1) {

10. sign = C[O0];

11. }

12. else {

13. for 1 =1 to n {

14. V = FindRecordset (C[1]1,C[01]);
15. str,=first part of C[0] until V;
16. str,=rest of C[0], after V;

17. str,=rest of C[i], after V;

18. ClO]=stry+" (("+str,+")// ("+str,+"))";
19. C[0]= C[0].replace all("(.","(");
20. }

21. }

22. sign = C[0];

23. End.

Algorithm GSign ([SiVS04])

Algorithm Extended GSign

Employed Algorithms

e Generate Possible Orders (GPPO)

— Takes as input a set of attributes and produces all the
possible combinations of them
* e.g. interesting orders: {A,B}—{A},{B},{A,B},{B,A}

e Compute Place Combinations (CPC)
— Input: a set of possible places

— Output: all their possible combinations
* e.g. positions {R, (1-2)} —{R},{(1-2)},{R,(1-2)}

DOLAP'07 Lisbon, Portugal, 2007-11-09 74

Generate Possible Orders (GPO)

Algorithm Generate Possible Orders (GPO)

1. Input: A set LookupSet with n items

2. Output: A set ResultsSet that contains all possible orders.

3. Begin

4. Let LookupSet = {I;, I,, .., I,} be a set with n items

5. TempSet = {};

6. Add to ResultSet all items of LookupSet as different sets, i.e., ResultSet = {/{
Iy, {Iz2y, oy {In}}s

7. do

8. {

9. TempSet = {};
10. for each set s in ResultSet {

11. for each item 1 in LookupSet {

12. if (i ¢ s)

13. {

14. TempSet = TempSet U {s U {1i}};
15. }

16. }

17. ResultSet = ResultSet U TempSet;
18.}

19.while (TempSet #) ;
20.return ResultSet;
21 .End.

Compute Place Combinations (CPC)

Algorithm Compute Place Combinations (CPC)

oy U W DN

10.
11.
12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.
23.
24.

Input: A set LookupSet with n items
Output: A set ResultSet that contains all possible orders.
Begin
Let LookupSet = {I;, I,, .., I,} be a set with n items
TempSet = {};
Add to ResultSet all items of LookupSet as different sets,
Il}/ {12}1 ey {In}};
do
{
TempSet = {};
for each set s in ResultSet {
for each item i1 in LookupSet {
if (i ¢ s)
{
z = s U{i};
if Not (ExistsIn (TempSet, z)) {
TempSet = TempSet U {z};
}

}
ResultSet = ResultSet U TempSet;
}
while (TempSet # J);
return ResultSet;
End.

i.e.,

ResultSet

{{

Employed Algorithms

* Generate Possible Signatures (GPS)
— Input: a signature
— Output: all possible signatures with sorters
— uses CPC ko GPO
— AppendOrder(S,0,p):

e Append order o in place p of signature S
e It p=(a,b) replace in S the string a.b with a.a_b(0).b
e It p=V then replace in S the string V with the string V.V!(0)

DOLAP'07 Lisbon, Portugal, 2007-11-09

77

Generate Possible Signatures
(GPS)

Algorithm Generate Possible Signatures (GPS)

1. Input: A signature S of a graph G=(V,E) with n nodes

2. Output: cis a collection with all signatures that contain possible sorters.

3. Begin

4., for each place p in G {

5. ResultSet = CPC(p); //combinations of places

6. }

7. for each combination ¢ in ResultSet { //for each combination of places
8. for each place p in combination ¢ { //for each place

9. CandidateSet = GPO(p); //candidate orderings for place p

10. for each order o in CandidateSet/{

11. tempSignature = AppendOrder (S,o,p); //append order o in place p of S
12. C = C U {tempSignature};

13. }

14. }

15. }

16. return C;

17. End.

DOLAP'07 Lisbon, Portugal, 2007-11-09 78

Observations

Balanced butterflies. The general case of butterflies is characterized by many
candidate positions for sorters. Overall, the introduction of sorters appears to benefit
the overall cost. The body of the butterfly is a good candidate to place a sorter,
especially when the left wing is highly selective.

Butterflies with a right-deep hierarchy. These butterflies behave similarly to the
eneral case of balanced butterflies. The size of the right wing is the major
eterminant of the overall completion cost of our algorithms due to the large number

of candidate positions for sorters.

Lines. The generated space of alternative physical representations of a linear scenario
is linear to the size of tﬁe workflow (without addition of sorters). In our experiments
we have observed that due to the selectivities involved, the left wing might
eventually determine the overall cost (and therefore, placing filters as early as
possible is beneficial, as one would typically expect).

Butterflies with no right wing. In principle, the butterflies that comprise just a left
wing are not particularly improved when sorters are involved. In particular, the
introduction of sorters in Wishbones and Trees does not lead to the reduction of the
total cost of the workflow. However, there are certain cases, in trees, where sorters
might help - provided that the data 1{3[11shed through the involved branch has a small
size or a large number of activities share the same interesting order.

Forks. Sorters are highly beneficial for forks. This is clearly anticipated since a fork
involves a high reusability of the butterfly’s body. Therefore, the body of the
butterfly is typically a good candidate for a sorter.

DOLAP'07 Lisbon, Portugal, 2007-11-09 79

Related Work

DOLAP'07 Lisbon, Portugal, 2007-11-09

80

[Arkt05]

[ChSh99]

[CuWi03]

[Hell98]

[Inmo02]

[LWGGO0]

Related Work

ARKTOS II
http://www.cs.uoi.gr/~pvassil/projects/arktos_II/index.html

S. Chaudhuri, K. Shim. Optimization of Queries with User-Defined
Predicates. In the ACM Transactions on Database Systems, Volume 24(2),
pp- 177-228, 1999.

Y. Cui, J. Widom. Lineage tracing for general data warehouse
transformations. In the VLDB Journal Volume 12 (1), pp. 41-58, May
2003.

J. M. Hellerstein. Optimization Techniques for Queries with Expensive
Methods. In the ACM Transactions on Database Systems, Volume 23(2),
pp- 113-157, June 1998.

W. Inmon, Building the Data Warehouse, John Wiley & Sons, Inc.
2002.

W. Labio, J.L. Wiener, H. Garcia-Molina, V. Gorelik. Efficient
Resumption of Interrupted Warehouse Loads. In Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data
(SIGMOD 2000), pp. 46-57, Dallas, Texas, USA, 2000.

DOLAP'07 Lisbon, Portugal, 2007-11-09 81

Related Work

[MoSi79] C. L. Monma and J. Sidney. Sequencing with series-parallel precedence
constraints. In Math. Oper. Res. 4, pp. 215-224, 1979.

[NeMo04] T.Neumann, G. Moerkotte. An Efficient Framework for Order
Optimization. In Proceedings of the 30" VLDB Conference (VLDB
2004), pp. 461-472, Toronto, Canada, 2004.

[PPDT06] Programmar Parser Development Toolkit version 1.20a. NorKen
Technologies. Available at http:// www.programmar.com, 2006.

[SAC+79] P.G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management
system. In Philip A. Bernstein, editor, In Proceedings of the 1979 ACM
SIGMOD International Conference on Management of Data, Boston,
Massachusetts, pp. 23-34, May 30 - June 1, 1979.

[SiSM96] D. Simmen, E. Shekita, T. Malkenus. Fundamental Techniques for
Order Optimization. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, Montreal, Quebec,
Canada, June 1996.

[SiVS04] A. Simitsis, P. Vassiliadis, T. K. Sellis: Optimizing ETL Processes in
Data Warehouse Environments, 2004.

DOLAP'07 Lisbon, Portugal, 2007-11-09 82

Related Work

[SiVS05] A. Simitsis, P. Vassiliadis, T. K. Sellis. Optimizing ETL Processes in Data
Warehouses. In Proceedings of the 215" International Conference on Data
Engineering (ICDE 2005), pp. 564-575, Tokyo, Japan, April 2005.

[Ullm88] J. D. Ullman, Principles of Database and Knowledge-base Systems, Volume
I, Computer Science Press, 1988.

[VaSS02] P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Modeling ETL Activities as
Graphs. In Proceedings of the 4™ International Workshop on the Design and
Management of Data Warehouses (DMDW'2002) in conjunction with CAiSE 02,
pp- 52-61, Toronto, Canada, May 27, 2002.

[VSGTO03] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis. A Framework for
the Design of ETL Scenarios. In the 15" Conference on Advanced Information
Systems Engineering (CAiSE '03), Klagenfurt/Austria, 16 - 20 June 2003.

[WaCh03] X. Wang, M. Cherniack. Avoiding sorting and grouping in processing
queries. In Proceedings of 29" VLDB Conference (VLDB 2003), Berlin,
Germany, September 9-12, 2003.

DOLAP'07 Lisbon, Portugal, 2007-11-09 83

Resumption

DOLAP'07 Lisbon, Portugal, 2007-11-09

84

Refreshment Failures

P P

Execution 3
Beaton? T
Beation1 [N TN
| | | | | |
0 |0 |0 e EY 10 120 |13 |10 160 180 0 20 20

DOLAP'07 Lisbon, Portugal, 2007-11-09

Refreshment Failures

2P

Execution 3

Execution 2
SCEl

M

E0 i20 i40 i60 |80

DOLAP'07 Lisbon, Portugal, 2007-11-09

100

120

130

140

220

240

260

Resumption

e Each DSA table is considered a savepoint

— In the absence of DSA tables, resumptions starts from
scratch

— Otherwise, after a failure, each activity part refers to
the closest savepoint to resume work
* In the latter case, ordering pays off, since each
savepoint can (a) give rescued data to
subsequent activities and (b) detect which subset
of the sorted incoming data have to be requested
from its providers

DOLAP'07 Lisbon, Portugal, 2007-11-09 87

Cost models and resumption

* Kavovikn Aettovgyia
— AplOuo mAeddwv mov emeegyaletal 1 activity
— T'ia m mAewxdeg eloddOL: computational_cost(z) is a function of m
— T black-box: computational cost(i) =m* cost_per_tuple(i)
OTOV cost_per_tuple: KOOTOG eTeLEQYATIAG LUAG HOVO TIAELADAGC
— ovvoAwa Computational_cost(G) = ,computational_cost(i)
Kavovkr) Aettovgyia pe avo’ncapt]m)\(’)yw ATIOTUX LWV

* k activities 0To povomatt amo Vv activity i wg to teAgvtato
savepoint

® m activities oto povomatt amod v activity i wg to DW
* p.:: 1 MOavOTNTA axmotvxiag g activity i o€ pa ekteAeoT)

— cost _until _crash(i) = 50% * computational cost(i)

— resumption_cost(i) = cost_until crash(i) + Z computational _ cdst(j)
computational cost(i) + Z computational _ costO)

— Resumption cost(G) = Z; p; * resumption _ cost(i)

DOLAP'07 Lisbon, Portugal, 2007-11-09 88

Variable failure rates p;,

100000

1
sel1=0.6

p:=0.003

2
sel,=0.1

p,=0.004 Ps=0.005

100000

DOLAP'07 Lisbon, Portugal, 2007-11-09 89

Butterfly 1%

Butterfly 5%

M N~ O 00 O M A NN I N d M M N NN~ M 00 © W NN o0 NN N O . N g S ©O ¥ 0 &N O S 0 N MO I od O O o O
N « N N © M~ o = N~ M A N~ O © < N~ 0 M n O « < © ¥ O 8 M 0 © 1 4 O M < N 1D O O
- — - — - o — — — - —
Butterfly 10%

Balanced Butterfly
Slowly Changing Dimension of
Type I

Part.new

Part.old

Not a typical
butterfly...

On-going/Future Work

e This work is part of the ARKTOS II project

http://www.cs.uoi.gr/~pvassil/projects/arktos II

DOLAP'07 Lisbon, Portugal, 2007-11-09

92

DOLAP'07 Lisbon, Portugal, 2007-11-09

93

DOLAP'07 Lisbon, Portugal, 2007-11-09

94

	Deciding the Physical Implementation of ETL Workflows
	Roadmap
	Roadmap
	ETL workflows
	Fundamental research question
	Now:
	Vision:
	Detail independence
	“identify the best possible physical implementation for a given logical ETL workflow”
	Problem formulation
	Problem formulation
	ETL workflows
	Templates
	Problem formulation
	Semantics and constraints
	Problem formulation
	Cost model
	Solution
	Roadmap
	Algorithmic alternatives
	Sorters: impact
	Sorter gains
	Sorters: the issues
	Candidate positions for sorters
	Candidate positions for sorters
	Over which attributes should we order the data?
	Interesting orders
	Interesting orders
	Interesting orders
	Interesting orders for ETL activities
	Ascending or descending orders?
	Algorithmic issues
	Signatures
	Exhaustive Ordering (EO)
	Roadmap
	Problem in experimental setup
	Problem in experimental setup
	Butterflies to the rescue!
	Butterflies to the rescue!
	Butterflies to the rescue!
	Butterfly classes
	Butterfly classes
	Line
	Primary Flow
	Wishbone
	Tree
	Fork
	Balanced Butterfly
	Experimental configuration
	Results
	Results
	Observations
	Observations
	Observations
	Roadmap
	Conclusions
	Message to you
	Goal of this work
	ETL workflows are not big queries
	Logical Optimization
	MS SSIS
	Problem Formulation
	Constraints
	Template customization
	Problem formulation
	Interesting Orders
	Transitions in the state-space problem due to sorters
	Algorithmic Issues
	Signature Generation
	GSign vs EGSign
	Employed Algorithms
	Generate Possible Orders (GPO)
	Compute Place Combinations (CPC)
	Employed Algorithms
	Generate Possible Signatures (GPS)
	Observations
	Related Work
	Related Work
	Related Work
	Related Work
	Resumption
	Refreshment Failures
	Refreshment Failures
	Resumption
	Cost models and resumption
	Variable failure rates pi
	Balanced Butterfly�Slowly Changing Dimension of Type II
	On-going/Future Work

